Bifurcation from Relative Equilibria of Noncompact Group Actions: Skew Products, Meanders, and Drift

We consider a nite-dimensional, typically noncompact Riemannian manifold M with a di erentiable proper action of a possibly noncompact Lie group G: We describe G-equivariant ows in a tubular neighborhood U of a relative equilibrium G u 0 ; u 0 2M , with compact isotropy H of u 0 ; by a skew product ow _ g = ga(v); _ v = '(v): Here g 2 G; a 2 alg(G): The vector v is in a linear slice V to the group action. The induced local ow on G V is equivariant under the action of (g 0 ; h) 2 G H on (g; v) 2 G V; given by (g 0 ; h)(g; v) = (g 0 gh 1 ; hv): The original ow on U is equivalent to the induced ow on fidg H-orbits in G V: Applications to relative equivariant Hopf bifurcation in V are presented, clarifying phenomena like periodicity, meandering, and drifting. Speci c illustrations involving Euclidean groups G are meandering spirals, in the plane, and drifting twisted scroll rings, in three-dimensional Belousov-Zhabotinsky media. 1991 Mathematics Subject Classi cation: 58F35, 57S20, 55R91

[1]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[2]  P. Ashwin,et al.  Noncompact drift for relative equilibria and relative periodic orbits , 1997 .

[3]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[4]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[5]  K. Maurin Representations of Compact Lie Groups , 1997 .

[6]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[7]  David A. Rand,et al.  Dynamics and symmetry. Predictions for modulated waves in rotating fluids , 1982 .

[8]  Alexander V. Panfilov,et al.  Dynamical simulations of twisted scroll rings in three-dimensional excitable media , 1985 .

[9]  Naomi Ehrich Leonard,et al.  Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry , 1997 .

[10]  E. Groves A Dissertation ON , 1928 .

[11]  G. E. Bredon Introduction to compact transformation groups , 1972 .

[12]  Richard S. Palais,et al.  On the Existence of Slices for Actions of Non-Compact Lie Groups , 1961 .

[13]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[14]  B. Fiedler Global Bifurcation of Periodic Solutions with Symmetry , 1988 .

[15]  H. Engel,et al.  Compound rotation of spiral waves in a light-sensitive Belousov—Zhabotinsky medium , 1993 .

[16]  Arun V. Holden,et al.  SPIRAL WAVE MEANDER AND SYMMETRY OF THE PLANE , 1996 .

[17]  D. Barkley,et al.  Euclidean symmetry and the dynamics of rotating spiral waves. , 1994, Physical review letters.

[18]  Michael Renardy,et al.  Bifurcation from Rotating Waves , 1982 .

[19]  Björn Sandstede,et al.  Center-manifold reduction for spiral waves , 1997 .

[20]  Martin Krupa,et al.  Bifurcations of relative equilibria , 1990 .

[21]  Björn Sandstede,et al.  Dynamics of Spiral Waves on Unbounded Domains Using Center-Manifold Reductions , 1997 .

[22]  Harm Hinrich Rotermund,et al.  Reaction diffusion patterns in the catalytic CO‐oxidation on Pt(110): Front propagation and spiral waves , 1993 .

[23]  Martin Golubitsky,et al.  Meandering of the Spiral Tip: An Alternative Approach , 1997 .

[24]  S. Muller,et al.  Complexity in spiral wave dynamics(a)). , 1993, Chaos.