Detection and discrimination of sulfate minerals using reflectance spectroscopy

Abstract A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance–compositional–structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3–26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9–1.2 μm interval. Fundamental S O bending and stretching vibration absorption bands occur in the 8–10, 13–18, and 19–24 μm regions (1000–1250, 550–770, and 420–530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4–5 μm (2000–2500 cm−1) region. Absorption features seen in the 1.7–1.85 μm interval are attributable to H O H/O H bending and translation/rotation combinations, while bands in the 2.1–2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of S O bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift S O band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4–5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.

[1]  Timothy E. Townsend,et al.  Discrimination of iron alteration minerals in visible and near‐infrared reflectance data , 1987 .

[2]  James E. Conel,et al.  Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums , 1969 .

[3]  W. Dickinson,et al.  Antarctic permafrost: An analogue for water and diagenetic minerals on Mars , 2003 .

[4]  M. Kawano,et al.  Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water , 2001 .

[5]  G. Rossman Spectroscopic and magnetic studies of ferric iron hydroxy sulfates: the series Fe(OH)SO_4·nH_2O and the jarosites , 1976 .

[6]  R. Burns,et al.  Rates of oxidative weathering on the surface of Mars , 1993 .

[7]  V. Farmer The Layer Silicates , 1974 .

[8]  D. Sherman SCF-Xα-SW MO Study of Fe-O and Fe-OH chemical bonds; applications to the mössbauer spectra and magnetochemistry of hydroxyl-bearing Fe3+ oxides and silicates , 1985 .

[9]  Martha W. Schaefer,et al.  Mineral spectroscopy : a tribute to Roger G. Burns , 1996 .

[10]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[11]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[12]  A. Navrotsky,et al.  Jarosite stability on Mars , 2004 .

[13]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[14]  Harold A. Scheraga,et al.  A Near-Infrared Study of Hydrogen Bonding in Water and Deuterium Oxide1 , 1965 .

[15]  J. Morse,et al.  The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C , 1993 .

[16]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[17]  J. B. Dalton,et al.  Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. , 2003, Astrobiology.

[18]  John C. Mars,et al.  Spectral reflectance properties (0.4-2.5 um) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulfate-hydrate minerals associated with sulfide-bearing mine waste , 2006 .

[19]  I. S. Oen Handbook of strata-bound and stratiform ore deposits , 1983 .

[20]  Ignasi Ribas,et al.  Loss of water from Mars: Implications for the oxidation of the soil , 2003 .

[21]  S. Gaffey,et al.  Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 µm): Applications in carbonate petrology , 1985 .

[22]  S. Hook Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with , 1996 .

[23]  Anne B. Kahle,et al.  Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .

[24]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[25]  S. Ross Sulphates and other Oxy-anions of Group VI , 1974 .

[26]  D. Sherman,et al.  Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy , 1982 .

[27]  C. Serna,et al.  Infrared and Raman study of alunite-jarosite compounds , 1986 .

[28]  C. Pieters,et al.  Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials , 1995 .

[29]  J. Mustard,et al.  Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars , 2002 .

[30]  G. Hladky,et al.  Stability of alunite minerals in aqueous solutions at normal temperature and pressure , 1981 .

[31]  Water soluble ions in the Nakhla martian meteorite , 2000 .

[32]  Janice L. Bishop,et al.  The visible and infrared spectral properties of jarosite and alunite , 2005 .

[33]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[34]  G. Choppin,et al.  Assignment of the Near‐Infrared Bands of Water and Ionic Solutions , 1964 .

[35]  U. Schwertmann,et al.  Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage , 1992 .

[36]  John Bridges,et al.  Evaporite mineral assemblages in the nakhlite (martian) meteorites , 2000 .

[37]  A. K. Baird,et al.  Mineralogic and Petrologic Implications of Viking Geochemical Results From Mars: Interim Report , 1976, Science.

[38]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[39]  G. Choppin,et al.  Near‐Infrared Studies of the Structure of Water. I. Pure Water , 1963 .

[40]  G. Rossman,et al.  Electronic Structure of Oxo-Bridged Iron(III) Dimers , 1972 .

[41]  R. E. Blake,et al.  Jarosite Mineralization in St. Lucia, W.I.: Preliminary Geochemical, Spectral, and Biological Investigations of a Martian Analogue , 2005 .

[42]  R. Morris Infrared Spectrophotometric Analysis of Calcium Sulfate Hydrates Using Internally Standardized Mineral Oil Mulls. , 1963 .

[43]  Satish C. B. Myneni,et al.  X-Ray and Vibrational Spectroscopy of Sulfate in Earth Materials , 2000 .

[44]  R. Burns Gossans on Mars , 1988 .

[45]  M. Darby Dyar,et al.  Spectroscopic evidence for hydrous iron sulfate in the Martian soil , 2004 .

[46]  Steven W. Squyres,et al.  Geochemical Modeling of Evaporites on Mars: Insight from Meridiani Planum , 2005 .

[47]  J. Donald Rimstidt,et al.  Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact , 2003 .

[48]  W. Hovis,et al.  Infrared spectral reflectance of some common minerals. , 1966, Applied optics.

[49]  E. Murad,et al.  Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities , 1994, Mineralogical Magazine.

[50]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[51]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[52]  Infrared spectroscopy experiment for Mariner Mars 1971 , 1970 .

[53]  G. Rossman Spectroscopic and magnetic studies of ferric iron hydroxy sulfates: Intensification of color in ferric iron clusters bridged by a single hydroxide ion , 1975 .

[54]  Y. I. Ryskin The Vibrations of Protons in Minerals: hydroxyl, water and ammonium , 1974 .

[55]  Y. Langevin,et al.  Summer Evolution of the North Polar Cap of Mars as Observed by OMEGA/Mars Express , 2005, Science.

[56]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[57]  R. Bain Diagenetic, nonevaporative origin for gypsum , 1990 .

[58]  D. Mckay,et al.  Chemical Weathering and Diagenesis of a Cold Desert Soil from Wright Valley, Antarctica: an Analog of Martian Weathering Processes , 1983 .

[59]  R L Mancinelli,et al.  Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials. , 1995, Icarus.

[60]  G. Marion,et al.  Stability of Magnesium Sulfate Minerals in Martian Environments , 2005 .

[61]  J. Fahey,et al.  An improved method for the determination of FeO in rocks and minerals including garnet , 1962 .

[62]  J. Bridges,et al.  A halite‐siderite‐anhydrite‐chlorapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars , 1999 .

[63]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[64]  D. Mckay,et al.  Water on Mars: Petrographic Evidence , 2002 .

[65]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[66]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[67]  G. Rossman Why hematite is red: Correlation of optical absorption intensities and magnetic moments of Fe^(3+) minerals , 1996 .

[68]  P. Robinson,et al.  Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite , 1970 .

[69]  S. Hook,et al.  Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.5 Micrometers , 1992 .

[70]  J. G. Bayly,et al.  The absorption spectra of liquid phase H2O, HDO and D2O from 0·7 μm to 10 μm , 1963 .

[71]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[72]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[73]  C. Pillinger,et al.  Determination of Sulphur-Bearing Components in C1 and C2 Carbonaceous Chondrites by Stepped Combustion , 1991 .

[74]  V. Farmer The Infrared spectra of minerals , 1974 .

[75]  David L. Bish,et al.  Magnesium sulphate salts and the history of water on Mars , 2004, Nature.

[76]  G. Jeong,et al.  Secondary mineralogy and microtextures of weathered sulfides and manganoan carbonates in mine waste-rock dumps, with implications for heavy-metal fixation , 2003 .

[77]  G. Marion,et al.  Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars , 2003 .

[78]  Roger N. Clark,et al.  Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy , 1989 .

[79]  Jeffrey S. Kargel,et al.  Spectral comparison of heavily hydrated salts with disrupted terrains on Europa , 2005 .

[80]  G. Choppin,et al.  Near‐Infrared Studies of the Structure of Water. III. Mixed Solvent Systems , 1972 .

[81]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[82]  M. Mellon,et al.  Laboratory simulations of Mars aqueous geochemistry , 2004 .

[83]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[84]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[85]  Thomas B. McCord,et al.  Indications of sulfate minerals in the Martian soil from Earth‐based spectroscopy , 1995 .

[86]  J. Mustard,et al.  TES Observations of the Global Distribution of Sulfate on Mars , 2001 .

[87]  S. McLennan,et al.  Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars , 2005 .

[88]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[89]  G. Plumlee Sulfate minerals- Crystallography, geochemistry and environmental significance , 2001 .

[90]  D. Vaniman,et al.  MARTIAN RELEVANCE OF DEHYDRATION AND REHYDRATION IN THE Mg-SULFATE SYSTEM. , 2005 .

[91]  T. Logan,et al.  Influence of Sulfate on Fe-Oxide Formation: Comparisons with a Stream Receiving Acid Mine Drainage , 1986 .

[92]  K. Keil,et al.  Mixing relationships in the Martian regolith and the composition of globally homogeneous dust , 2000 .

[93]  M. Hass,et al.  The infra-red spectrum and crystal structure of gypsum , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[94]  Jillian F. Banfield,et al.  Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth , 2004, International Journal of Astrobiology.

[95]  John W. Salisbury,et al.  Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .

[96]  J. Pearl,et al.  Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities, and complex refractive indices derived from infra-red spectra , 1988 .

[97]  Roger G. Burns,et al.  Ferric sulfates on Mars , 1987 .

[98]  D. Powers,et al.  Magnetic Behavior and Infrared Spectra of Jarosite, Basic Iron Sulfate, and Their Chromate Analogs , 1974 .

[99]  K. Herkenhoff,et al.  A First Look at the Mineralogy and Geochemistry of the MER-B Landing Site in Meridiani Planum , 2004 .

[100]  Udo Schwertmann,et al.  A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters , 1990 .

[101]  F. G. Ferris,et al.  Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water , 1990 .

[102]  J. Bishop,et al.  Solfataric Alteration in Hawaii as a Mechanism for Formation of the Sulfates Observed on Mars by OMEGA and the MER Instruments , 2005 .

[103]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[104]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[105]  K. Sasaki,et al.  Distinction of jarosite-group compounds by Raman spectroscopy , 1998 .

[106]  K. Wolf Regional studies and specific deposits , 1985 .

[107]  I. Chou,et al.  Determination of epsomite-hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4-H2O. , 2003, Astrobiology.

[108]  V. Farmer Orthosilicates, Pyrosilicates, and other Finite-chain Silicates , 1974 .

[109]  J. Moore,et al.  Experimental studies of Mars‐analog brines , 1999 .

[110]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[111]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[112]  Philip R. Christensen,et al.  Thermal Infrared Emission Spectroscopy of Salt Minerals Predicted for Mars , 1998 .

[113]  Carol R. Stoker,et al.  Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates , 1989 .

[114]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[115]  D. K. Breitinger,et al.  Vibrational spectra of synthetic minerals of the alunite and crandallite type , 1997 .

[116]  T. McCord,et al.  Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .

[117]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[118]  E. Gaidos,et al.  Geological and geochemical legacy of a cold early Mars , 2003 .

[119]  L. Kirkland,et al.  Barite and Celestine Detection in the Thermal Infrared - Possible Application to Determination of Aqueous , 2004 .

[120]  S. Wood,et al.  Experimental hydrothermal alteration of a martian analog basalt: Implications for martian meteorites , 2000 .

[121]  D. Blowes,et al.  Environmental geochemistry of sulfide oxidation : developed from a symposium sponsored by the Division of Geochemistry, Inc., at the 204th National Meeting of the American Chemical Society, Washington, DC, August 23-28, 1992 , 1994 .

[122]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[123]  D. Blowes,et al.  Environmental geochemistry of sulfide oxidation , 1993 .

[124]  H. Dill The geology of aluminium phosphates and sulphates of the alunite group minerals: a review , 2001 .

[125]  Hens H. AorBn,et al.  VARIATIONS IN INFRARED SPECTRA, MOLECULAR SYMMETRY AND SITE SYMMETRY OF SULFATE MINERALS , 2007 .

[126]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[127]  Gilbert Gordon,et al.  Near infrared spectra of water and aqueous solutions , 1964 .

[128]  B. Clark,et al.  The salts of Mars , 1981 .

[129]  A. R. Fraser,et al.  Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK , 1999, Clay Minerals.

[130]  A. Brearley Occurrence and possible significance of rare Ti oxides (Magneli phases) in carbonaceous chondrite matrices , 1993 .

[131]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[132]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[133]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[134]  R. V. Morris,et al.  Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .

[135]  D. Bish,et al.  The hydration and dehydration of hydrous ferric iron sulfates , 2005 .

[136]  M. Hodson,et al.  Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain , 2003, Mineralogical Magazine.

[137]  Michael E. Zolensky,et al.  Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite , 1988 .

[138]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[139]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[140]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[141]  J. Jambor,et al.  Alunite-Jarosite Crystallography, Thermodynamics, and Geochronology , 2000 .

[142]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[143]  S. Krivovichev,et al.  The Crystal Chemistry of Sulfate Minerals , 2000 .

[144]  D. Nordstrom,et al.  Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California , 2000 .

[145]  P. Rojík,et al.  Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy , 2003 .

[146]  T. D. WnIrB,et al.  Electronic spectra of Fe3 + oxides and oxide hydroxides in the near IR to near UV , 2022 .

[147]  T. Roush Midinfrared (5.0 – 25 μm, 2000 – 400 cm−1) optical constants of hydrous carbonate, sulfate, and nitrate , 1996 .

[148]  A. Vassallo,et al.  Infrared Emission Spectroscopy of Some Sulfate Minerals , 1992 .