On the Power of One-Way Automata with Quantum and Classical States

We consider the model of one-way automata with quantum and classical states (qcfas) introduced in [23]. We show, by a direct approach, that qcfas with isolated cut-point accept regular languages only, thus characterizing their computational power. Moreover, we give a size lower bound for qcfas accepting regular languages, and we explicitly build qcfas accepting the word quotients and inverse homomorphic images of languages accepted by given qcfas with isolated cut-point, maintaining the same cut-point, isolation, and polynomially increasing the size.

[1]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[2]  G. Shilov,et al.  Linear Algebra , 1971 .

[3]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[4]  Carlo Mereghetti,et al.  Quantum finite automata with control language , 2006, RAIRO Theor. Informatics Appl..

[5]  Alberto Bertoni,et al.  Some formal tools for analyzing quantum automata , 2006, Theor. Comput. Sci..

[6]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[7]  Alberto Bertoni,et al.  Small size quantum automata recognizing some regular languages , 2005, Theor. Comput. Sci..

[8]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[9]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[10]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[11]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[12]  Alberto Bertoni,et al.  Trace monoids with idempotent generators and measure-only quantum automata , 2010, Natural Computing.

[13]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[14]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[15]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[16]  Mark Mercer Lower Bounds for Generalized Quantum Finite Automata , 2008, LATA.

[17]  Carlo Mereghetti,et al.  Quantum automata for some multiperiodic languages , 2007, Theor. Comput. Sci..

[18]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[19]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[20]  Beatrice Palano,et al.  Behaviours of Unary Quantum Automata , 2010, Fundam. Informaticae.

[21]  Maksim Kravtsev,et al.  Probabilistic Reversible Automata and Quantum Automata , 2002, COCOON.

[22]  Carlo Mereghetti,et al.  Size lower bounds for quantum automata , 2014, Theor. Comput. Sci..

[23]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[24]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .