Modeling functions of striatal dopamine modulation in learning and planning

[1]  K. J. Craik,et al.  The nature of explanation , 1944 .

[2]  D. Thistlethwaite A critical review of latent learning and related experiments. , 1951, Psychological bulletin.

[3]  E. Hilgard A Behavior System: An Introduction to Behavior Theory Concerning the Individual Organism. , 1954 .

[4]  J. Piaget The construction of reality in the child , 1954 .

[5]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[6]  N. Mackintosh The psychology of animal learning , 1974 .

[7]  C. L. Hull A behavior system: An introduction to behavior theory concerning the individual organism , 1974 .

[8]  Y. Katayama,et al.  Slow rhythmic activity of caudate neurons in the cat: Statistical analysis of caudate neuronal spike trains , 1980, Experimental Neurology.

[9]  S. Lea,et al.  Contemporary Animal Learning Theory, Anthony Dickinson. Cambridge University Press, Cambridge (1981), xii, +177 pp. £12.50 hardback, £3.95 paperback , 1981 .

[10]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[11]  E. T. Rolls,et al.  Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness , 1984, Neuroscience.

[12]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[13]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[14]  P. Stanzione,et al.  Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. , 1988, The Journal of physiology.

[15]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[16]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[17]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[18]  J. Millar,et al.  Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum , 1990, Neuroscience.

[19]  Vijaykumar Gullapalli,et al.  A stochastic reinforcement learning algorithm for learning real-valued functions , 1990, Neural Networks.

[20]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[21]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[22]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[23]  Claus-W. Wallesch,et al.  Parkinson's disease patient's behaviour in a covered maze learning task , 1990, Neuropsychologia.

[24]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[25]  M. Gabriel,et al.  Learning and Computational Neuroscience: Foundations of Adaptive Networks , 1990 .

[26]  C. Gallistel The organization of learning , 1990 .

[27]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[28]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[29]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[30]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[31]  J. Cohen,et al.  Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. , 1992, Psychological review.

[32]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[34]  J. Bargas,et al.  Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. , 1992, Journal of neurophysiology.

[35]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[36]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Sofge THE ROLE OF EXPLORATION IN LEARNING CONTROL , 1992 .

[38]  Peter Ford Dominey,et al.  A cortico-subcortical model for generation of spatially accurate sequential saccades. , 1992, Cerebral cortex.

[39]  S. Young,et al.  Presynaptic long‐term changes in excitability of the corticostriatal pathway , 1992, Neuroreport.

[40]  W. Schultz,et al.  Neuronal activity in monkey striatum related to the expectation of predictable environmental events. , 1992, Journal of neurophysiology.

[41]  T W Berger,et al.  Depression of glutamatergic and gabaergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors , 1993, Synapse.

[42]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[43]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[44]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Surmeier,et al.  Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. , 1993, Advances in neurology.

[46]  Kitai St,et al.  Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. , 1993 .

[47]  B. Balleine,et al.  Motivational control of goal-directed action , 1994 .

[48]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[49]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[50]  P. Calabresi,et al.  Post-receptor mechanisms underlying striatal long-term depression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[52]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[53]  W. Schultz,et al.  Context-dependent activity in primate striatum reflecting past and future behavioral events. , 1995 .

[54]  Peter Ford Dominey,et al.  A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences , 1995, Journal of Cognitive Neuroscience.

[55]  A. Louilot,et al.  Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception , 1995, Neuroscience.

[56]  C. Cepeda,et al.  Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. , 1995, Journal of neurophysiology.

[57]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[58]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[59]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[60]  C. Pennartz The ascending neuromodulatory systems in learning by reinforcement: comparing computational conjectures with experimental findings , 1995, Brain Research Reviews.

[61]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[62]  T. Sejnowski,et al.  How the Basal Ganglia Make Decisions , 1996 .

[63]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[64]  J. Bargas,et al.  Dopamine modulates the afterhyperpolarization in neostriatal neurones , 1996, Neuroreport.

[65]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  J. Decety The neurophysiological basis of motor imagery , 1996, Behavioural Brain Research.

[68]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[69]  R. Turner,et al.  Dopaminergic Neurons Intrinsic to the Primate Striatum , 1997, The Journal of Neuroscience.

[70]  P. Calabresi,et al.  Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors , 1997, The Journal of Neuroscience.

[71]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[72]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[73]  J. Salamone,et al.  Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis , 1997, Neuroscience & Biobehavioral Reviews.

[74]  P. Greengard,et al.  The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Lovinger,et al.  Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Umemiya,et al.  Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. , 1997, Journal of neurophysiology.

[77]  P. Calabresi,et al.  Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum , 1997, Neuroscience & Biobehavioral Reviews.

[78]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[79]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[80]  F. Gonon Prolonged and Extrasynaptic Excitatory Action of Dopamine Mediated by D1 Receptors in the Rat Striatum In Vivo , 1997, The Journal of Neuroscience.

[81]  J. Gray,et al.  Increased extracellular dopamine in the nucleus accumbens of the rat during associative learning of neutral stimuli , 1998, Neuroscience.

[82]  Cameron S. Carter,et al.  Dopamine and the mechanisms of cognition: Part I. A neural network model predicting dopamine effects on selective attention , 1998, Biological Psychiatry.

[83]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[84]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[85]  B. Balleine,et al.  Goal-directed instrumental action: contingency and incentive learning and their cortical substrates , 1998, Neuropharmacology.

[86]  T. Robbins,et al.  Neural Systems Underlying Arousal and Attention: Implications for Drug Abuse a , 1998, Annals of the New York Academy of Sciences.

[87]  C. Cepeda,et al.  Dopamine and N-Methyl-D- Aspartate Receptor Interactions in the Neostriatum , 1998, Developmental Neuroscience.

[88]  T. Robbins,et al.  Neural systems underlying arousal and attention. Implications for drug abuse. , 1998, Annals of the New York Academy of Sciences.

[89]  Jonathan D. Cohen,et al.  Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task , 1998, Biological Psychiatry.

[90]  R. Malenka,et al.  Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. , 1998, Journal of neurophysiology.

[91]  Jean-Marc Fellous,et al.  Computational Models of Neuromodulation , 1998, Neural Computation.

[92]  Paul Greengard,et al.  DARPP-32: Regulator of the Efficacy of Dopaminergic Neurotransmission , 1998 .

[93]  Charles J. Wilson,et al.  Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. , 1998, Journal of neurophysiology.

[94]  W. Schultz,et al.  A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task , 1999, Neuroscience.

[95]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[96]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[97]  D. Durstewitz,et al.  A Neurocomputational Theory of the Dopaminergic Modulation of Working Memory Functions , 1999, The Journal of Neuroscience.

[98]  R. Suri,et al.  Internal model reproduces anticipatory neural activity , 1999 .

[99]  P. Calabresi,et al.  Unilateral dopamine denervation blocks corticostriatal LTP. , 1999, Journal of neurophysiology.

[100]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[101]  Michael Kearns,et al.  Bias-Variance Error Bounds for Temporal Difference Updates , 2000, COLT.

[102]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.