Phylogenetic confidence intervals for the optimal trait value

We consider a stochastic evolutionary model for a phenotype developing amongst n related species with unknown phylogeny. The unknown tree is modelled by a Yule process conditioned on n contemporary nodes. The trait value is assumed to evolve along lineages as an Ornstein-Uhlenbeck process. As a result, the trait values of the n species form a sample with dependent observations. We establish three limit theorems for the sample mean corresponding to three domains for the adaptation rate. In the case of fast adaptation, we show that for large $n$ the normalized sample mean is approximately normally distributed. Using these limit theorems, we develop novel confidence interval formulae for the optimal trait value.

[1]  M. Steel,et al.  Distribution of branch lengths and phylogenetic diversity under homogeneous speciation models. , 2011, Journal of theoretical biology.

[2]  Tanja Stadler,et al.  Simulating trees with a fixed number of extant species. , 2011, Systematic biology.

[3]  Piotr Miłoś,et al.  $$U$$U-Statistics of Ornstein–Uhlenbeck Branching Particle System , 2011, 1111.4560.

[4]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[5]  T. F. Hansen,et al.  A Comparative Method for Studying Adaptation to a Randomly Evolving Environment , 2008, Evolution; international journal of organic evolution.

[6]  Branch lengths on birth-death trees and the expected loss of phylogenetic diversity. , 2010, Systematic biology.

[7]  Lam Si Tung Ho,et al.  Asymptotic theory with hierarchical autocorrelation: Ornstein–Uhlenbeck tree models , 2013, 1306.1322.

[8]  Bengt Oxelman,et al.  Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. , 2012, Systematic biology.

[9]  A. Edwards,et al.  Estimation of the Branch Points of a Branching Diffusion Process , 1970 .

[10]  A. Goldberger,et al.  On the Exact Covariance of Products of Random Variables , 1969 .

[11]  T. F. Hansen,et al.  Evolution of Thermal Physiology in Liolaemus Lizards: Adaptation, Phylogenetic Inertia, and Niche Tracking , 2009, The American Naturalist.

[12]  B. Rannala,et al.  DETECTING CORRELATION BETWEEN CHARACTERS IN A COMPARATIVE ANALYSIS WITH UNCERTAIN PHYLOGENY , 2003, Evolution; international journal of organic evolution.

[13]  Cécile Ané,et al.  Analysis of comparative data with hierarchical autocorrelation , 2008, 0804.3166.

[14]  Sébastien Roch,et al.  Phase transition on the convergence rate of parameter estimation under an Ornstein–Uhlenbeck diffusion on a tree , 2014, Journal of mathematical biology.

[15]  Thomas F Hansen,et al.  ASSESSING CURRENT ADAPTATION AND PHYLOGENETIC INERTIA AS EXPLANATIONS OF TRAIT EVOLUTION:THE NEED FOR CONTROLLED COMPARISONS , 2005, Evolution; international journal of organic evolution.

[16]  On the distribution of interspecies correlation for Markov models of character evolution on Yule trees. , 2014, Journal of theoretical biology.

[17]  F. James Rohlf,et al.  A COMMENT ON PHYLOGENETIC CORRECTION , 2006, Evolution; international journal of organic evolution.

[18]  Tanja Stadler,et al.  Lineages-through-time plots of neutral models for speciation. , 2008, Mathematical biosciences.

[19]  Emal Pasarly Time , 2011, Encyclopedia of Evolutionary Psychological Science.

[20]  Elchanan Mossel,et al.  Majority rule has transition ratio 4 on Yule trees under a 2-state symmetric model. , 2014, Journal of theoretical biology.

[21]  Marc A Suchard,et al.  Diversity, disparity, and evolutionary rate estimation for unresolved Yule trees. , 2012, Systematic biology.

[22]  M Steel,et al.  Properties of phylogenetic trees generated by Yule-type speciation models. , 2001, Mathematical biosciences.

[23]  T. F. Hansen,et al.  A phylogenetic comparative method for studying multivariate adaptation. , 2012, Journal of theoretical biology.

[24]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[25]  M. Barber,et al.  Diversity , 2010, The Fairchild Books Dictionary of Fashion.

[26]  P. Jagers,et al.  Branching Processes: Variation, Growth, and Extinction of Populations , 2005 .

[27]  Francesc Rosselló,et al.  The mean value of the squared path-difference distance for rooted phylogenetic trees , 2009, ArXiv.

[28]  R. Adamczak,et al.  CLT for Ornstein-Uhlenbeck branching particle system , 2011, 1111.4559.

[29]  Olivier Gascuel,et al.  Predicting the ancestral character changes in a tree is typically easier than predicting the root state. , 2013, Systematic biology.

[30]  Tanja Gernhard New Analytic Results for Speciation Times in Neutral Models , 2008, Bulletin of mathematical biology.

[31]  E. Stone,et al.  Why the phylogenetic regression appears robust to tree misspecification. , 2011, Systematic biology.

[32]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[33]  T. Garland,et al.  Within-species variation and measurement error in phylogenetic comparative methods. , 2007, Systematic biology.

[34]  K. Bartoszek Quantifying the effects of anagenetic and cladogenetic evolution , 2013, bioRxiv.

[35]  C. Ané,et al.  A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. , 2014, Systematic biology.

[36]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[37]  K. Bartoszek,et al.  Interspecies correlation for neutrally evolving traits. , 2012, Journal of theoretical biology.

[38]  M. Symonds The effects of topological inaccuracy in evolutionary trees on the phylogenetic comparative method of independent contrasts. , 2002, Systematic biology.

[39]  P. Royston A Remark on Algorithm as 181: The W‐Test for Normality , 1995 .

[40]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[41]  Gabriel Cardona,et al.  Nodal distances for rooted phylogenetic trees , 2008, Journal of mathematical biology.

[42]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[43]  Carl Boettiger,et al.  Is your phylogeny informative? Measuring the power of comparative methods , 2011 .

[44]  A critical branching process model for biodiversity , 2004, Advances in Applied Probability.

[45]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[46]  Daniel Wegmann,et al.  FITTING MODELS OF CONTINUOUS TRAIT EVOLUTION TO INCOMPLETELY SAMPLED COMPARATIVE DATA USING APPROXIMATE BAYESIAN COMPUTATION , 2012, Evolution; international journal of organic evolution.

[47]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[48]  F. James Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[49]  T. Stadler On incomplete sampling under birth-death models and connections to the sampling-based coalescent. , 2009, Journal of theoretical biology.

[50]  B Rannala,et al.  Accommodating phylogenetic uncertainty in evolutionary studies. , 2000, Science.

[51]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.