Music listening engages specific cortical regions within the temporal lobes: Differences between musicians and non-musicians

[1]  Sandy Lovie How the mind works , 1980, Nature.

[2]  R. Passingham,et al.  Broca's area and the origins of human vocal skill. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  G. Schlaug,et al.  In vivo evidence of structural brain asymmetry in musicians , 1995, Science.

[4]  J. Staiger,et al.  Increased corpus callosum size in musicians , 1995, Neuropsychologia.

[5]  B. Weber,et al.  Human hippocampus establishes associations in memory , 1997, Hippocampus.

[6]  S. Pinker How the Mind Works , 1999, Philosophy after Darwin.

[7]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[8]  R. Zatorre,et al.  Spectral and temporal processing in human auditory cortex. , 2001, Cerebral cortex.

[9]  Stefan Koelsch,et al.  Bach Speaks: A Cortical “Language-Network” Serves the Processing of Music , 2002, NeuroImage.

[10]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[11]  Isabelle Peretz,et al.  Brain specialization for music. , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[12]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[13]  Isabelle Peretz,et al.  Book Review: Brain Specialization for Music , 2002 .

[14]  R. Zatorre,et al.  Human temporal-lobe response to vocal sounds. , 2002, Brain research. Cognitive brain research.

[15]  M. Coltheart,et al.  Modularity of music processing , 2003, Nature Neuroscience.

[16]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[17]  Aniruddh D. Patel,et al.  Language, music, syntax and the brain , 2003, Nature Neuroscience.

[18]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[19]  Pascal Belin,et al.  Is voice processing species-specific in human auditory cortex? An fMRI study , 2004, NeuroImage.

[20]  Andreas A. Ioannides,et al.  Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study , 2004, NeuroImage.

[21]  S. Koelsch Neural substrates of processing syntax and semantics in music , 2005, Current Opinion in Neurobiology.

[22]  Vincent J. Schmithorst,et al.  Separate cortical networks involved in music perception: preliminary functional MRI evidence for modularity of music processing , 2005, NeuroImage.

[23]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[24]  Joseph E LeDoux,et al.  Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior , 2005, Neuron.

[25]  S. Koelsch Investigating Emotion with Music , 2005, Annals of the New York Academy of Sciences.

[26]  Michael J. Martinez,et al.  Music and language side by side in the brain: a PET study of the generation of melodies and sentences , 2006, The European journal of neuroscience.

[27]  I. Peretz The nature of music from a biological perspective , 2006, Cognition.

[28]  E Altenmüller,et al.  Cross‐modal plasticity of the motor cortex while listening to a rehearsed musical piece , 2006, The European journal of neuroscience.

[29]  Aniruddh D. Patel Music, Language, and the Brain , 2007 .

[30]  Pascal Belin,et al.  Amygdala responses to nonlinguistic emotional vocalizations , 2007, NeuroImage.

[31]  Petri Toiviainen,et al.  MIR in Matlab (II): A Toolbox for Musical Feature Extraction from Audio , 2007, ISMIR.

[32]  I. Peretz,et al.  Happy, sad, scary and peaceful musical excerpts for research on emotions , 2008 .

[33]  Takamitsu Watanabe,et al.  Memory of music: Roles of right hippocampus and left inferior frontal gyrus , 2008, NeuroImage.

[34]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[35]  Stephen A. Engel,et al.  Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise , 2009, Cerebral cortex.

[36]  Teemu Rinne,et al.  Functional Maps of Human Auditory Cortex: Effects of Acoustic Features and Attention , 2009, PloS one.

[37]  N. Masataka The origins of language and the evolution of music: A comparative perspective. , 2009, Physics of life reviews.

[38]  Noël Staeren,et al.  Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex , 2009, Current Biology.

[39]  G. Schlaug,et al.  Music Making as a Tool for Promoting Brain Plasticity across the Life Span , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[40]  Teemu Rinne,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[41]  Klaus Scheffler,et al.  Musical Training Induces Functional Plasticity in Human Hippocampus , 2010, The Journal of Neuroscience.

[42]  Gregory Hickok,et al.  Functional Anatomy of Language and Music Perception: Temporal and Structural Factors Investigated Using Functional Magnetic Resonance Imaging , 2011, The Journal of Neuroscience.

[43]  V. Menon,et al.  Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. , 2011, Cerebral cortex.

[44]  Anders Friberg,et al.  A Comparison of Perceptual Ratings and Computed Audio Features , 2011 .

[45]  Cathy J. Price,et al.  Auditory-Motor Expertise Alters “Speech Selectivity” in Professional Musicians and Actors , 2010, Cerebral cortex.

[46]  Christo Pantev,et al.  Plasticity of the human auditory cortex related to musical training , 2011, Neuroscience & Biobehavioral Reviews.

[47]  Nancy Kanwisher,et al.  Sensitivity to musical structure in the human brain. , 2012, Journal of neurophysiology.

[48]  On neural systems for speech and song in autism. , 2012, Brain : a journal of neurology.

[49]  Lutz Jäncke,et al.  Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds , 2013, Cortex.

[50]  D. Deutsch,et al.  Speech versus song: multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. , 2013, Cerebral cortex.

[51]  Arafat Angulo-Perkins,et al.  Fear across the senses: brain responses to music, vocalizations and facial expressions. , 2015, Social cognitive and affective neuroscience.