Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases

[1]  K. Nakayama,et al.  Preferential interaction of TIP120A with Cul1 that is not modified by NEDD8 and not associated with Skp1. , 2003, Biochemical and biophysical research communications.

[2]  Geng Wu,et al.  Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. , 2003, Molecular cell.

[3]  M. Tyers,et al.  The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase , 2003, Nature.

[4]  S. Elledge,et al.  A family of mammalian F-box proteins , 1999, Current Biology.

[5]  Y. Xiong,et al.  The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1 , 2000, Molecular and Cellular Biology.

[6]  M. Mann,et al.  Identification of the receptor component of the IκBα–ubiquitin ligase , 1998, Nature.

[7]  G. Blobel,et al.  Structure of the nuclear transport complex karyopherin-β2–Ran˙GppNHp , 1999, Nature.

[8]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[9]  M. Estelle,et al.  The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis , 2003, The EMBO journal.

[10]  J. Massagué,et al.  Ubiquitin-dependent degradation of , 1999 .

[11]  G. Blobel,et al.  Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. , 1999, Nature.

[12]  Michele Pagano,et al.  SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 , 1999, Nature Cell Biology.

[13]  E. E. Snell,et al.  A. Rev. Biochem. , 1969 .

[14]  M. Muramatsu,et al.  Molecular cloning of a novel 120-kDa TBP-interacting protein. , 1996, Biochemical and biophysical research communications.

[15]  Keiji Tanaka,et al.  Covalent modification of all members of human cullin family proteins by NEDD8 , 1999, Oncogene.

[16]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[17]  M. Estelle,et al.  AXR1-ECR1–Dependent Conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 Is Required for Auxin Response Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010282. , 2002, The Plant Cell Online.

[18]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[19]  Z. Ronai,et al.  Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. , 1999, Molecular cell.

[20]  D. C. Dias,et al.  Nedd8 on cullin: building an expressway to protein destruction , 2004, Oncogene.

[21]  M. Pagano,et al.  The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin , 1999, Oncogene.

[22]  H. Kawasaki,et al.  A new NEDD8-ligating system for cullin-4A. , 1998, Genes & development.

[23]  Jidong Liu,et al.  NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. , 2002, Molecular cell.

[24]  Jong-Bok Yoon,et al.  TIP120A associates with unneddylated cullin 1 and regulates its neddylation , 2003, FEBS letters.

[25]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[26]  P. Howley,et al.  Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. , 1998, Molecular cell.

[27]  R. Benarous,et al.  The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell , 1999, Current Biology.

[28]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[29]  J. Yates,et al.  BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. , 2003, Molecular cell.

[30]  P. Evans,et al.  Molecular Architecture and Functional Model of the Endocytic AP2 Complex , 2002, Cell.

[31]  Daniel A. Haber,et al.  Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines , 2001, Nature.

[32]  V. Chau,et al.  Nedd8 Modification of Cul-1 Activates SCFβTrCP-Dependent Ubiquitination of IκBα , 2000, Molecular and Cellular Biology.

[33]  Y. Xiong,et al.  Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases , 2003, Nature Cell Biology.

[34]  Y. Xiong,et al.  ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. , 1999, Molecular cell.

[35]  M. Tyers,et al.  Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase , 2003, Cell.

[36]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[37]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[38]  Edward T Kipreos,et al.  cul-1 Is Required for Cell Cycle Exit in C. elegans and Identifies a Novel Gene Family , 1996, Cell.

[39]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[40]  Xing Wang Deng,et al.  The COP9 Signalosome Interacts with SCFUFO and Participates in Arabidopsis Flower Development Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009936. , 2003, The Plant Cell Online.

[41]  A. Kumar,et al.  An additional role for the F-box motif: gene regulation within the Neurospora crassa sulfur control network. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Toda,et al.  Covalent modifier NEDD8 is essential for SCF ubiquitin‐ligase in fission yeast , 2000, The EMBO journal.

[43]  M. Tyers,et al.  SCFMet30‐mediated control of the transcriptional activator Met4 is required for the G1–S transition , 2000 .

[44]  Z. Ronai,et al.  Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of IκBα , 1999 .

[45]  M. Estelle,et al.  Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003178. , 2002, The Plant Cell Online.

[46]  Kenneth P Nephew,et al.  The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. , 2003, Molecular endocrinology.

[47]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[48]  Masatomo Kobayashi,et al.  Accumulation of Phosphorylated Repressor for Gibberellin Signaling in an F-box Mutant , 2003, Science.

[49]  Hongwei Guo,et al.  Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor , 2003, Cell.

[50]  Michele Pagano,et al.  The F-box protein family , 2000, Genome Biology.

[51]  S. Elledge,et al.  Phosphorylation-Dependent Ubiquitination of Cyclin E by the SCFFbw7 Ubiquitin Ligase , 2001, Science.

[52]  S. Beckendorf,et al.  The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. , 2003, Developmental cell.

[53]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[54]  M. Goebl,et al.  The Abundance of Cell Cycle Regulatory Protein Cdc4p Is Controlled by Interactions between Its F Box and Skp1p , 1999, Molecular and Cellular Biology.

[55]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[56]  W. Kaelin,et al.  An intact NEDD8 pathway is required for Cullin‐dependent ubiquitylation in mammalian cells , 2002, EMBO reports.

[57]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[58]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[59]  B. Errede,et al.  Regulation of Ste7 Ubiquitination by Ste11 Phosphorylation and the Skp1-Cullin-F-box Complex* , 2003, Journal of Biological Chemistry.

[60]  H. Suzuki,et al.  NEDD8 recruits E2‐ubiquitin to SCF E3 ligase , 2001, The EMBO journal.

[61]  Travis W. Banks,et al.  Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. , 1999, Genes & development.

[62]  Brian A. Hemmings,et al.  The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs , 1999, Cell.

[63]  L. W. Parks,et al.  Methionine biosynthesis in yeast. , 1962, Archives of biochemistry and biophysics.

[64]  M. Tyers,et al.  Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. , 1998, Genes & development.

[65]  C. Müller,et al.  Structure of importin-β bound to the IBB domain of importin-α , 1999, Nature.

[66]  Geng Wu,et al.  Structure of a -TrCP1-Skp1--Catenin Complex , 2003 .

[67]  Y. Xiong,et al.  Activation of UBC5 Ubiquitin-conjugating Enzyme by the RING Finger of ROC1 and Assembly of Active Ubiquitin Ligases by All Cullins* , 2002, The Journal of Biological Chemistry.

[68]  Keiji Tanaka,et al.  The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice , 2001, The Journal of cell biology.

[69]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[70]  Wilhelm Krek,et al.  p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells , 1999, Nature Cell Biology.

[71]  Hui Zhang,et al.  CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. , 2002, Molecular cell.

[72]  R. Deshaies SCF and Cullin/Ring H2-based ubiquitin ligases. , 1999, Annual review of cell and developmental biology.

[73]  M. Peter,et al.  Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Reed,et al.  Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line , 2001, Nature.

[75]  E. Yeh,et al.  Identification of NEDD8-conjugation site in human cullin-2. , 1999, Biochemical and biophysical research communications.

[76]  A. Shevchenko,et al.  Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome , 2001, Science.

[77]  W. Kaelin,et al.  The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. , 1998, Genes & development.

[78]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[79]  Jong-Bok Yoon,et al.  TIP120A Associates with Cullins and Modulates Ubiquitin Ligase Activity* , 2003, The Journal of Biological Chemistry.

[80]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[81]  Stephen J. Elledge,et al.  Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex , 2000, Nature.

[82]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[83]  François Rouyer,et al.  The F-box protein Slimb controls the levels of clock proteins Period and Timeless , 2002, Nature.

[84]  M. Tyers,et al.  SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. , 2000, The EMBO journal.

[85]  R. Deshaies,et al.  COP9 Signalosome A Multifunctional Regulator of SCF and Other Cullin-Based Ubiquitin Ligases , 2003, Cell.

[86]  E. Lightcap,et al.  A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Gönczy,et al.  Cytoskeletal Regulation by the Nedd8 Ubiquitin-Like Protein Modification Pathway , 2002, Science.

[88]  R. Honda,et al.  Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). , 2000, Biochemical and biophysical research communications.

[89]  P Bork,et al.  Comparison of ARM and HEAT protein repeats. , 2001, Journal of molecular biology.

[90]  Y. Xiong,et al.  HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IκB and β-catenin , 1999, Oncogene.