Are There Rearrangement Hotspots in the Human Genome?

In a landmark paper, Nadeau and Taylor [18] formulated the random breakage model (RBM) of chromosome evolution that postulates that there are no rearrangement hotspots in the human genome. In the next two decades, numerous studies with progressively increasing levels of resolution made RBM the de facto theory of chromosome evolution. Despite the fact that RBM had prophetic prediction power, it was recently refuted by Pevzner and Tesler [4], who introduced the fragile breakage model (FBM), postulating that the human genome is a mosaic of solid regions (with low propensity for rearrangements) and fragile regions (rearrangement hotspots). However, the rebuttal of RBM caused a controversy and led to a split among researchers studying genome evolution. In particular, it remains unclear whether some complex rearrangements (e.g., transpositions) can create an appearance of rearrangement hotspots. We contribute to the ongoing debate by analyzing multi-break rearrangements that break a genome into multiple fragments and further glue them together in a new order. In particular, we demonstrate that (1) even if transpositions were a dominant force in mammalian evolution, the arguments in favor of FBM still stand, and (2) the “gene deletion” argument against FBM is flawed.

[1]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[2]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[4]  Phil Trinh,et al.  Chromosomal Breakpoint Reuse in Genome Sequence Rearrangement , 2005, J. Comput. Biol..

[5]  João Meidanis,et al.  Reversal and transposition distance of linear chromosomes , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).

[6]  David Sankoff,et al.  The Signal in the Genomes , 2006, PLoS Comput. Biol..

[7]  Caleb Webber,et al.  Hotspots of mutation and breakage in dog and human chromosomes. , 2005, Genome research.

[8]  Roel A. Ophoff,et al.  Analysis of segmental duplications reveals a distinct pattern of continuation-of-synteny between human and mouse genomes , 2007, Human Genetics.

[9]  Vineet Bafna,et al.  Sorting permutations by tanspositions , 1995, SODA '95.

[10]  Philip Hahnfeldt,et al.  Using Graph Theory to Describe and Model Chromosome Aberrations , 2002, Radiation research.

[11]  David Alan Christie,et al.  Genome rearrangement problems , 1998 .

[12]  R K Sachs,et al.  Computer analysis of mFISH chromosome aberration data uncovers an excess of very complicated metaphases , 2002, International journal of radiation biology.

[13]  C. Markert,et al.  Evolution of the Gene , 1948, Nature.

[14]  Shreedhar Natarajan,et al.  A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. , 2004, Genome research.

[15]  A. Delcher,et al.  Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. , 2004, Genome research.

[16]  Vineet Bafna,et al.  Genome Rearrangements and Sorting by Reversals , 1996, SIAM J. Comput..

[17]  Ron Shamir,et al.  Two Notes on Genome Rearrangement , 2003, J. Bioinform. Comput. Biol..

[18]  University of Glasgow , 1862, Nature.

[19]  Bernard B. Suh,et al.  Reconstructing contiguous regions of an ancestral genome. , 2006, Genome research.

[20]  Sridhar Hannenhalli,et al.  Recurring genomic breaks in independent lineages support genomic fragility , 2006, BMC Evolutionary Biology.

[21]  P. Hahnfeldt,et al.  Quantitative analysis of radiation-induced chromosome aberrations , 2004, Cytogenetic and Genome Research.

[22]  K. Howe,et al.  Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. , 2007, Genome research.

[23]  Pavel A. Pevzner,et al.  Whole genome duplications, multi-break rearrangements, and genome halving problem , 2007, SODA '07.

[24]  Tzvika Hartman,et al.  A Simpler 1.5-Approximation Algorithm for Sorting by Transpositions , 2003, CPM.

[25]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[26]  Vineet Bafna,et al.  Sorting Permutations by Transpositions , 1995, SODA.

[27]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[28]  Jose Castresana,et al.  Is mammalian chromosomal evolution driven by regions of genome fragility? , 2006, Genome Biology.

[29]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[30]  Guohui Lin,et al.  Signed genome rearrangement by reversals and transpositions: models and approximations , 2001, Theor. Comput. Sci..

[31]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[32]  Shietung Peng,et al.  A 2-Approximation Algorithm for Genome Rearrangements by Reversals and Transpositions , 1999, Theor. Comput. Sci..

[33]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  David Sankoff,et al.  Rearrangements and chromosomal evolution. , 2003, Current opinion in genetics & development.

[35]  Maria Emilia Telles Walter,et al.  Working on the Problem of Sorting by Transpositions on Genome Rearrangements , 2003, CPM.

[36]  Pavel A. Pevzner,et al.  Multi-break rearrangements and chromosomal evolution , 2008, Theor. Comput. Sci..

[37]  P. Philippsen,et al.  The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome , 2004, Science.

[38]  Pavel A. Pevzner,et al.  Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[39]  T. Haaf,et al.  7E olfactory receptor gene clusters and evolutionary chromosome rearrangements , 2005, Cytogenetic and Genome Research.

[40]  Guohui Lin,et al.  Signed Genome Rearrangement by Reversals and Transpositions: Models and Approximations , 1999, COCOON.

[41]  D Malakoff,et al.  The Rise of the Mouse, Biomedicine's Model Mammal , 2000, Science.

[42]  Chuan Yi Tang,et al.  An Efficient Algorithm for Sorting by Block-Interchanges and Its Application to the Evolution of Vibrio Species , 2005, J. Comput. Biol..

[43]  Richard Friedberg,et al.  Efficient sorting of genomic permutations by translocation, inversion and block interchange , 2005, Bioinform..

[44]  Pavel A Pevzner,et al.  The Fragile Breakage versus Random Breakage Models of Chromosome Evolution , 2006, PLoS Comput. Biol..

[45]  P. Pevzner,et al.  Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Enno Ohlebusch,et al.  Sorting by Weighted Reversals, Transpositions, and Inverted Transpositions , 2006, RECOMB.

[47]  Roded Sharan,et al.  A 1.5-approximation algorithm for sorting by transpositions and transreversals , 2004, J. Comput. Syst. Sci..

[48]  Phil Trinh,et al.  Chromosomal breakpoint re-use in the inference of genome sequence rearrangement , 2004, RECOMB '04.

[49]  A. J. Radcliffe,et al.  Reversals and Transpositions Over Finite Alphabets , 2005 .

[50]  P. Pevzner,et al.  Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. , 2003, Genome research.

[51]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Glenn Tesler,et al.  Efficient algorithms for multichromosomal genome rearrangements , 2002, J. Comput. Syst. Sci..

[53]  Dan Levy,et al.  Comparing DNA Damage-Processing Pathways by Computer Analysis of Chromosome Painting Data , 2004, J. Comput. Biol..

[54]  E Pennisi A Mouse Chronology , 2000, Science.

[55]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  David Sankoff,et al.  Edit Distances for Genome Comparisons Based on Non-Local Operations , 1992, CPM.

[57]  Max A. Alekseyev,et al.  Multi-break Rearrangements: From Circular to Linear Genomes , 2007, RECOMB-CG.

[58]  Tzvika Hartman,et al.  A 1.375-Approximation Algorithm for Sorting by Transpositions , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[59]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[60]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.