Six-Jump-Cycle Mechanism for Collective Correlations in Nonstoichiometric Intermetallic Compounds

The six-jump-cycle (6JC) mechanism is used to derive expressions for collective correlation factors in a nonstoichiometric binary intermetallic compound AB. The 6JC is used as a fundamental unit for the cycle involving a perfectly ordered configuration and a two-jumpcycle (2JC) as a fundamental unit for the cycle involving existing antistructural atoms. The jump frequency for the 6JC is calculated in terms of a four-frequency-model using the mean first passage concept of Arita et al., while the jump frequency for the 2JC is taken to be the harmonic mean of the individual jump frequencies. The expressions for phenomenological transport coefficients are obtained through the linear response approximation using the kinetic equation approach. The results for collective correlation factors are compared with Monte Carlo simulation and are found to be in reasonably good agreement when the ratio of jump frequencies of regular site and antistructural atoms is of the order of 10-1.

[1]  D. K. Chaturvedi,et al.  Collective Correlation Factors in Random Non-Stoichiometric Inermetallic Compounds , 2005 .

[2]  I. Belova,et al.  Random-Walk Calculations in Intermetallic Compounds , 2005 .

[3]  I. Belova,et al.  Diffusion in substitutionally disordered B2 intermetallics , 2002 .

[4]  J. H. Westbrook,et al.  Intermetallic compounds : principles and practice , 2002 .

[5]  I. Belova,et al.  Calculation of the phenomenological coefficients for diffusion by six jump cycles in non-stoichiometric intermetallic compounds , 2002 .

[6]  I. Belova,et al.  Tracer Correlation, Collective Correlation and Vacancy Wind Factors in Intermetallics Taking the B2 Structures , 2000 .

[7]  D. Chaturvedi,et al.  Atomic diffusion by the dumb-bell mechanism in a concentrated random bcc alloy , 2000 .

[8]  D. Chaturvedi,et al.  Atomic transport coefficients in a binary random alloy , 1999 .

[9]  R. Drautz,et al.  The six-jump diffusion cycles in B2 compounds revisited , 1999 .

[10]  I. Belova,et al.  Theory and Simulation of Diffusion Kinetics in Intermetallic Compounds , 1998 .

[11]  I. Belova,et al.  A theory of diffusion in the ordered alloy. I. Tracer correlation effects , 1996 .

[12]  I. Belova,et al.  Diffusion in a model of an ordered alloy , 1995 .

[13]  Z. Qin,et al.  Random walk analysis of the collective cosine formulation of correlation effects in atom transport in a concentrated alloy , 1995 .

[14]  D. Chaturvedi,et al.  Tracer diffusion coefficients for the dumb-bell transport mechanism in a concentrated f.c.c. alloy , 1994 .

[15]  G. Murch,et al.  Tracer and Collective Correlation Factors in Solid State Diffusion , 1994 .

[16]  Sheikh A. Akbar,et al.  Diffusion in ordered alloys and intermetallic compounds , 1993 .

[17]  A. B. Lidiard,et al.  Atomic transport in solids , 1993 .

[18]  A. B. Lidiard,et al.  Atomic Transport in Solids: List of principal symbols , 1993 .

[19]  D. Fisher Defect and diffusion forum , 1991 .

[20]  M. Koiwa,et al.  Diffusion mechanisms in ordered alloys—a detailed analysis of six-jump vacancy cycle in the B2 type lattice , 1989 .

[21]  P. Holdsworth,et al.  Correlated random walk in a multicomponent alloy self-consistent decoupling approximation , 1986 .

[22]  R. Kikuchi,et al.  Correlation factor in tracer diffusion for high tracer concentrations , 1985 .

[23]  E. L. Allnatt,et al.  Computer simulation of phenomenological coefficients for atom transport in a random alloy , 1984 .

[24]  A. Nowick,et al.  Diffusion in crystalline solids , 1984 .

[25]  R. Elliott,et al.  Correlated random walk in lattices: Tracer diffusion at general concentration , 1983 .

[26]  H. Barker On diffusion kinetics in ordered binary alloys , 1979 .

[27]  D. Tonkin,et al.  Material World , 2023, Kindred.

[28]  J. R. Manning Correlation Factors for Diffusion in Nondilute Alloys , 1971 .

[29]  J. R. Manning,et al.  Diffusion Kinetics for Atoms in Crystals , 1968 .

[30]  A. B. Lidiard CXXXIII. Impurity diffusion in crystals (mainly ionic crystals with the sodium chloride structure) , 1955 .