Gaussian polytopes: variances and limit theorems

The convex hull of n independent random points in ℝ d , chosen according to the normal distribution, is called a Gaussian polytope. Estimates for the variance of the number of i-faces and for the variance of the ith intrinsic volume of a Gaussian polytope in ℝ d , d∈ℕ, are established by means of the Efron-Stein jackknife inequality and a new formula of Blaschke-Petkantschin type. These estimates imply laws of large numbers for the number of i-faces and for the ith intrinsic volume of a Gaussian polytope as n→∞.

[1]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[2]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[3]  A New Integral Geometric Formula of the Blaschke-Petkantschin Type , 1992 .

[4]  R. E. Miles ISOTROPIC RANDOM SIMPLICES , 1971 .

[5]  Bruno Massé,et al.  On the LLN for the number of vertices of a random convex hull , 2000, Advances in Applied Probability.

[6]  A. Rukhin,et al.  Asymptotic Distribution of the Normal Sample Range , 1993 .

[7]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[8]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[9]  N. Henze,et al.  The Limit Distribution of the Largest Interpoint Distance from a Symmetric Kotz Sample , 1996 .

[10]  L. Santaló Integral geometry and geometric probability , 1976 .

[11]  Daniel Hug,et al.  Asymptotic mean values of Gaussian polytopes , 2003 .

[12]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[13]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[14]  Yuliy M. Baryshnikov,et al.  Regular simplices and Gaussian samples , 1994, Discret. Comput. Geom..

[15]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[16]  J. Patel,et al.  Handbook of the normal distribution , 1983 .

[17]  Matthias Reitzner,et al.  Random polytopes and the Efron--Stein jackknife inequality , 2003 .

[18]  Matthias Reitzner,et al.  The combinatorial structure of random polytopes , 2005 .

[19]  K. V. Mardia,et al.  Tippett’s formulas and other results on sample range and extremes , 1965 .

[20]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[21]  Irene Hueter,et al.  The convex hull of a normal sample , 1994, Advances in Applied Probability.

[22]  Rolf Schneider,et al.  Discrete Aspects of Stochastic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[23]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[24]  J. G. Wendel A Problem in Geometric Probability. , 1962 .

[25]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[26]  Irene Hueter,et al.  Limit theorems for the convex hull of random points in higher dimensions , 1999 .

[27]  Rolf Schneider,et al.  Random projections of regular simplices , 1992, Discret. Comput. Geom..