RESULTS ON THE COMPUTATIONAL COMPLEXITY OF LINEAR IDEMPOTENT MAL'CEV CONDITIONS

[1]  B. Jonnson Algebras Whose Congruence Lattices are Distributive. , 1967 .

[2]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[3]  Alan Day,et al.  A Characterization of Modularity for Congruence Lattices of Algebras* , 1969, Canadian Mathematical Bulletin.

[4]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[5]  A. Pixley,et al.  Functionally complete algebras generating distributive and permutable classes , 1970 .

[6]  J. Hagemann,et al.  Onn-permutable congruences , 1973 .

[7]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[8]  George M. Bergman,et al.  On the existence of subalgebras of direct products with prescribedd-fold projections , 1977 .

[9]  H. Peter Gumm,et al.  Geometrical methods in congruence modular algebras , 1983 .

[10]  Walter Taylor,et al.  The Lattice of Interpretability Types of Varieties , 1984 .

[11]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[12]  Keith A. Kearnes Congruence Permutable and Congruence 3-Permutable Locally Finite Varieties , 1993 .

[13]  Brian A. Davey,et al.  Near unanimity: an obstacle to general duality theory , 1995 .

[14]  Michael Sipser,et al.  Introduction to the Theory of Computation: Preliminary Edition , 1996 .

[15]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[16]  Giora Slutzki,et al.  Computational Complexity of Term-Equivalence , 1999, Int. J. Algebra Comput..

[17]  Ralph McKenzie,et al.  The Type Set of a Variety is Not Computable , 2001, Int. J. Algebra Comput..

[18]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[19]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[20]  R. McKenzie,et al.  Few subpowers, congruence distributivity and near-unanimity terms , 2008 .

[21]  Andrei A. Bulatov,et al.  Recent Results on the Algebraic Approach to the CSP , 2008, Complexity of Constraints.

[22]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[23]  Miklós Maróti The existence of a near-unanimity term in a finite algebra is decidable , 2009, J. Symb. Log..

[24]  Ralph Freese,et al.  On the Complexity of Some Maltsev Conditions , 2009, Int. J. Algebra Comput..

[25]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[26]  Philippe Schnoebelen,et al.  Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[27]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[28]  Miklós Maróti,et al.  Finitely Related Clones and Algebras with Cube Terms , 2012, Order.