Phonon wave interference and thermal bandgap materials.

Wave interference modifies phonon velocities and density of states, and in doing so creates forbidden energy bandgaps for thermal phonons. Materials that exhibit wave interference effects allow the flow of thermal energy to be manipulated by controlling the material's thermal conductivity or using heat mirrors to reflect thermal vibrations. The technological potential of these materials, such as enhanced thermoelectric energy conversion and improved thermal insulation, has fuelled the search for highly efficient phonon wave interference and thermal bandgap materials. In this Progress Article, we discuss recent developments in the understanding and manipulation of heat transport. We show that the rational design and fabrication of nanostructures provides unprecedented opportunities for creating wave-like behaviour of heat, leading to a fundamentally new approach for manipulating the transfer of thermal energy.

[1]  J. Joannopoulos,et al.  Omnidirectional reflection from a one-dimensional photonic crystal. , 1998, Optics letters.

[2]  Z. Akšamija,et al.  Thermal conductivity of Si 1-x Ge x /Si 1-y Ge y superlattices: Competition between interfacial and internal scattering , 2013 .

[3]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[4]  Yan Pennec,et al.  Two-dimensional phononic crystals: Examples and applications , 2010 .

[5]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[6]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[7]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[8]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[9]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[10]  Shanhui Fan,et al.  Erratum: Photonic crystals: putting a new twist on light , 1997, Nature.

[11]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[12]  A. Strachan,et al.  Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths , 2013 .

[13]  Cristina H. Amon,et al.  Disruption of superlattice phonons by interfacial mixing , 2013 .

[14]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[15]  B. Djafari-Rouhani,et al.  Omnidirectional elastic band gap in finite lamellar structures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[17]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[18]  N. Mingo,et al.  Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.

[19]  Alan J. H. McGaughey,et al.  Effect of interfacial species mixing on phonon transport in semiconductor superlattices , 2009 .

[20]  A. Håkansson,et al.  Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems , 2004 .

[21]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[22]  K. Nelson,et al.  Anisotropy of the thermal conductivity in GaAs/AlAs superlattices. , 2013, Nano letters.

[23]  Eleftherios N. Economou,et al.  Band structure of elastic waves in two dimensional systems , 1993 .

[24]  Kang L. Wang,et al.  Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .

[25]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[26]  D. Rowe Thermoelectrics Handbook , 2005 .

[27]  Edwin L. Thomas,et al.  Simultaneous localization of photons and phonons in two-dimensional periodic structures , 2006 .

[28]  Edwin L. Thomas,et al.  Periodic materials and interference lithography : for photonics, phononics and mechanics , 2009 .

[29]  Peixuan Chen,et al.  Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. , 2013, Physical review letters.

[30]  Ali Shakouri,et al.  Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices , 2002 .

[31]  Martin Maldovan,et al.  Narrow low-frequency spectrum and heat management by thermocrystals. , 2013, Physical review letters.

[32]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[33]  Jivtesh Garg,et al.  Minimum thermal conductivity in superlattices: A first-principles formalism , 2012 .

[34]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[35]  N. Marzari,et al.  High thermal conductivity in short-period superlattices. , 2011, Nano letters.

[36]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[37]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[38]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[39]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[40]  C. Kittel Introduction to solid state physics , 1954 .

[41]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[42]  Lauryn L. Baranowski,et al.  Advances in Thermal Conductivity , 2012 .

[43]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[44]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[45]  A. McGaughey,et al.  Complex superlattice unit cell designs for reduced thermal conductivity , 2008 .

[46]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[47]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[48]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[49]  K. H. Ploog,et al.  Thermal conductivity of GaAs/AlAs superlattices , 1999 .

[50]  F. Gygi,et al.  Dimensionality and heat transport in Si-Ge superlattices , 2013, 1903.09855.

[51]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[52]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[53]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[54]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[55]  Patrice Chantrenne,et al.  Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Edwin L. Thomas,et al.  Colloidal crystals go hypersonic , 2006, Nature materials.

[57]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[58]  A. Minnich,et al.  Coherent and Incoherent Thermal Transport in Nanomeshes , 2014, 1403.7647.

[59]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[60]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[61]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[62]  J. Schumann,et al.  Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. , 2010, Nature materials.

[63]  M. Stroscio,et al.  Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell , 2000 .

[64]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[65]  K. Esfarjani,et al.  Green's function studies of phonon transport across Si/Ge superlattices , 2014 .

[66]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[67]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[68]  K. Goodson,et al.  Thermal characterization of Bi2Te3/Sb2Te3 superlattices , 2001 .

[69]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .

[70]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[71]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[72]  Gang Chen,et al.  Thermal conductivity of periodic microporous silicon films , 2004 .

[73]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[74]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[75]  Eric A Shaner,et al.  Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. , 2011, Nano letters.

[76]  Sebastian Volz,et al.  A Special Issue on Nanoscale Heat Transfer , 2008 .

[77]  A. McGaughey,et al.  Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm , 2013 .

[78]  Gang Chen,et al.  Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics , 2008 .

[79]  Yukihiro Tanaka,et al.  Phonon group velocity and thermal conduction in superlattices , 1999 .

[80]  T. Isotalo,et al.  Engineering thermal conductance using a two-dimensional phononic crystal , 2014, Nature Communications.

[81]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[82]  N. Mingo,et al.  Diameter dependence of SiGe nanowire thermal conductivity , 2010, 1104.1570.

[83]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[84]  Gang Chen Phonon wave heat conduction in thin films and superlattices , 1999 .

[85]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[86]  Raymundo Bautista,et al.  Examples and applications , 2009 .

[87]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[88]  Ang,et al.  Thermal conductivity of symmetrically strained Si / Ge superlattices , 2000 .