Modeling and Mesoscale Simulation of Ice-Strengthened Mechanical Properties of Concrete at Low Temperatures

AbstractFormation of ice plays a key role in the behavior of concrete materials at low temperatures in cold and wet regions. The internal stresses generated during the freeze-thaw process could cau...

[1]  Tamon Ueda,et al.  Stress Analysis for Concrete Materials under Multiple Freeze-Thaw Cycles , 2015 .

[2]  Tamon Ueda,et al.  Mesoscale modeling of water penetration into concrete by capillary absorption , 2011 .

[3]  Dawei Zhang,et al.  Meso-scale Mechanical Model for Mortar Deformation under Freeze Thaw Cycles , 2013 .

[4]  Haluk Aktan,et al.  Active and non-active porosity in concrete Part II: Evaluation of existing models , 2002 .

[5]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[6]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  F. S. Rostásy,et al.  Stress-strain-behaviour of concrete at extremely low temperature , 1980 .

[8]  Christian Hellmich,et al.  Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model , 2011 .

[9]  Dawei Zhang,et al.  Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete , 2014 .

[10]  Qingbin Li,et al.  Prediction of elastic modulus and Poisson’s ratio for unsaturated concrete , 2007 .

[11]  T. Powers A Working Hypothesis for Further Studies of Frost Resistance of Concrete , 1945 .

[12]  Dawei Zhang,et al.  Mesoscale Simulation of Deformation for Mortar and Concrete under Cyclic Freezing and Thawing Stress , 2015 .

[13]  George W. Scherer,et al.  Effect of air voids on salt scaling and internal freezing , 2010 .

[14]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[15]  Wei Sun,et al.  Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously , 2011 .

[16]  George C. Lee,et al.  MECHANICAL PROPERTIES OF HIGH-STRENGTH CONCRETE AT LOW TEMPERATURE , 1988 .

[17]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[18]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[19]  P. Monteiro,et al.  Poroelastic model for concrete exposed to freezing temperatures , 2008 .

[20]  Christian Hellmich,et al.  Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength , 2009 .

[21]  K. Scrivener,et al.  The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete , 2004 .

[22]  A. Filiatrault,et al.  Stress-strain behavior of reinforcing steel and concrete under seismic strain rates and low temperatures , 2001 .

[23]  Stefan Scheiner,et al.  Continuum Microviscoelasticity Model for Aging Basic Creep of Early-Age Concrete , 2009 .

[24]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[25]  Tamon Ueda,et al.  Closure to “Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete” by Fuyuan Gong, Dawei Zhang, Evdon Sicat, and Tamon Ueda , 2015 .

[26]  Christian Hellmich,et al.  Shotcrete elasticity revisited in the framework of continuum micromechanics : From submicron to meter level , 2005 .

[27]  E. Lemarchand,et al.  A micromechanics model for partial freezing in porous media , 2015 .

[28]  Tamon Ueda,et al.  Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles , 2014 .

[29]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[30]  Kohei Nagai,et al.  Mesoscopic Simulation of Failure of Mortar and Concrete by 2D RBSM , 2004 .

[31]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[32]  Stephen Brunauer,et al.  Pore structure analysis by water vapor adsorption: I. t-Curves for water vapor , 1969 .

[33]  Z. Bažant,et al.  Moisture diffusion in cementitious materials Adsorption isotherms , 1994 .

[34]  Edward J. Garboczi,et al.  Analytical formulas for interfacial transition zone properties , 1997 .

[35]  Bernhard Pichler,et al.  Estimation of Influence Tensors for Eigenstressed Multiphase Elastic Media with Nonaligned Inclusion Phases of Arbitrary Ellipsoidal Shape , 2010 .

[36]  R. Zimmerman,et al.  Compressibility and shear compliance of spheroidal pores: Exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases , 2011 .

[37]  G. Fagerlund Fatigue effects associated with freeze-thaw of materials , 2000 .

[38]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[39]  Stefan Jacobsen,et al.  High Strength Concrete-Freeze Thaw Testing and Cracking , 1995 .

[40]  T. Ueda,et al.  Mesoscale Simulation of Influence of Frost Damage on Mechanical Properties of Concrete , 2009 .

[41]  Stefan Scheiner,et al.  From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete , 2008 .

[42]  Tamon Ueda,et al.  Simulation of Chloride Diffusivity for Cracked Concrete Based on RBSM and Truss Network Model , 2008 .

[43]  Koji Matsumoto,et al.  Mesoscopic analysis of mortar under high-stress creep and low-cycle fatigue loading , 2008 .

[44]  Franz-Josef Ulm,et al.  Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties , 2004 .

[45]  S. Ghabezloo Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste , 2010, 1003.5071.

[46]  Zhifu Yang Assessing cumulative damage in concrete and quantifying its influence on life cycle performance modeling , 2004 .

[47]  J. Ollivier,et al.  Interfacial transition zone in concrete , 1995 .

[48]  Mervyn J. Kowalsky,et al.  Cyclic Response of Reinforced Concrete Members at Low Temperatures , 2008 .

[49]  Stefan Jacobsen,et al.  Effect of cracking and healing on chloride transport in OPC concrete , 1996 .

[50]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[51]  J. Marchand,et al.  Microscopic observation of cracks in concrete — A new sample preparation technique using dye impregnation , 1996 .

[52]  Tamon Ueda,et al.  Stress-Strain Model of Concrete Damaged by Freezing and Thawing Cycles , 2004 .

[53]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[54]  Tai Te Wu,et al.  The effect of inclusion shape on the elastic moduli of a two-phase material* , 1966 .

[55]  Sidney Diamond,et al.  The ITZ in concrete – a different view based on image analysis and SEM observations , 2001 .

[56]  Haluk Aktan,et al.  Active and non-active porosity in concrete Part I: Experimental evidence , 2002 .

[57]  FRACTURE MECHANISM AND PREDICTION OF DEFORMATION OF MORTAR UNDER TIME-DEPENDENT LOADS BY MESO-SCALE ANALYSIS , 2010 .

[58]  George C. Lee,et al.  MECHANICAL PROPERTIES OF CONCRETE AT LOW TEMPERATURE , 1988 .

[59]  Stefan Scheiner,et al.  Influence of shotcrete composition on load‐level estimation in NATM‐tunnel shells: Micromechanics‐based sensitivity analyses , 2012 .

[60]  T. Ueda,et al.  Stress-Strain relationship of frost-damaged concrete subjected to fatigue loading , 2008 .

[61]  C. Hellmich,et al.  Effect of gel–space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach , 2013 .