Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states

We present a new scheme for sharing an arbitrary two-qubit quantum state with n agents. In our scheme, the sender Alice first shares n Einsein-Podolsky-Rosen (EPR) pairs in Bell states with n agents. After setting up the secure quantum channel, Alice first applies (n − 2) Controlled-Not (CNOT) gate operations, and then performs two Bell-state measurements and (n − 2) single-particle measurements (n >2). In addition, all controllers only hold one particle in their hands, respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis $${\{{\vert}0\rangle, {\vert}1\rangle\}}$$. Compared with other schemes with Bell states, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher total efficiency.

[1]  Zhong-Xiao Man,et al.  Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states , 2007 .

[2]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[3]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[4]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[5]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[6]  Hideki Imai,et al.  A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes , 2003 .

[7]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[8]  Tie-Jun Wang,et al.  Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements , 2008 .

[9]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[10]  Yuan Hao,et al.  Tripartite Arbitrary Two-Qutrit Quantum State Sharing , 2008 .

[11]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[12]  K. Peng,et al.  Multiparty secret sharing of quantum information based on entanglement swapping , 2004 .

[13]  Zhan-jun Zhang Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message , 2006 .

[14]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[15]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[16]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[17]  Zhan-jun Zhang,et al.  Improved Wójcik's eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss , 2004, quant-ph/0411030.

[18]  Xiu Xiao-Ming,et al.  A Theoretical Scheme for Multiparty Multi-particle State Sharing , 2008 .

[19]  Zhanjun Zhang,et al.  Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing , 2008 .

[20]  Z. Man,et al.  Multiparty secret sharing of quantum information using and identifying Bell states , 2005 .

[21]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[22]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.

[23]  Yi-min Liu,et al.  Many-Agent Controlled Teleportation of Multi-qubit Quantum Information via Quantum Entanglement Swapping , 2004, quant-ph/0411088.

[24]  P. Panigrahi,et al.  Quantum-information splitting using multipartite cluster states , 2008, 0802.0781.

[25]  P. Panigrahi,et al.  In how many ways can quantum information be split , 2009, 0907.3532.

[26]  Yu-Bo Sheng,et al.  Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state , 2008, 1005.0034.

[27]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[28]  Xiang Ying,et al.  Longitudinal Susceptibility of S = 1/2 Low-Dimensional Heisenberg Ferromagnet in a Magnetic Field , 2008 .

[29]  Zhan-Jun Zhang,et al.  Generalized Multiparty Quantum Single-Qutrit-State Sharing , 2008 .

[30]  Dong Wang,et al.  Generalized quantum state sharing of arbitrary unknown two-qubit state , 2007 .