Frontiers in the Application of RF Vacuum Electronics

The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication—terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.

[1]  C. Du,et al.  Chiral Plasmons Enable Coherent Vortex Smith–Purcell Radiation , 2022, Laser & Photonics Reviews.

[2]  B. Song,et al.  A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications , 2022, Micromachines.

[3]  J. Sirigiri,et al.  Development of Kilowatt THz Gyrotrons for Pulsed Dynamic Nuclear Polarization - Cavity Design Code Phaedra - , 2022, International Conference on Infrared, Millimeter, and Terahertz Waves.

[4]  T. Goodman,et al.  Tests and Qualification of the European 1 MW, 170 GHz CW Gyrotron in an ITER relevant configuration at SPC , 2022, 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz).

[5]  Paul Jaffe Spooky Power at a Distance: Researchers have beamed substantial amounts of energy at distances over 1 kilometer , 2022, IEEE spectrum.

[6]  P. Pan,et al.  Terahertz Power Module Based on 0.34 THz Traveling Wave Tube , 2022, IEEE Electron Device Letters.

[7]  S. Kutsaev,et al.  Transformative Technology for FLASH Radiation Therapy: A Snowmass 2021 White Paper , 2022, 2203.11047.

[8]  Y. Gong,et al.  High-Frequency Vacuum Electron Devices , 2022, Electronics.

[9]  Jessie R. Balbin,et al.  Overview of JET results for optimising ITER operation , 2022, Nuclear Fusion.

[10]  R. Griffin,et al.  Overhauser Dynamic Nuclear Polarization with Selectively Deuterated BDPA Radicals. , 2021, Journal of the American Chemical Society.

[11]  A. Beaumont,et al.  The plan forward for EU DEMO , 2021, Fusion engineering and design.

[12]  Bo Rong,et al.  6G: The Next Horizon: From Connected People and Things to Connected Intelligence , 2021, IEEE Wireless Communications.

[13]  R. Griffin,et al.  Time domain DNP at 1.2 T. , 2021, Journal of magnetic resonance.

[14]  Jinjun Feng,et al.  High Linear Power E-Band Traveling-Wave Tube for Communication Applications , 2021, IEEE Transactions on Electron Devices.

[15]  Claudio Paoloni,et al.  Sub-THz Wireless Transport Layer for Ubiquitous High Data Rate , 2021, IEEE Communications Magazine.

[16]  W. He,et al.  Terahertz orbital angular momentum: Generation, detection and communication , 2021, China Communications.

[17]  J. Puech,et al.  Wideband Highly Efficient Ka-band 250 W Space Traveling-Wave Tube THL20250C & THL20250R , 2021, International Vacuum Electronics Conference.

[18]  C. Armstrong These vacuum devices stood guard during the Cold war, advanced particle physics, treated cancer patients, and made the Beatles sound better , 2020, IEEE spectrum.

[19]  A. Roitman,et al.  High Power Pulsed 263 GHz Extended Interaction Amplifier , 2020, International Vacuum Electronics Conference.

[20]  A. Illingworth,et al.  WIVERN: An ESA Earth Explorer Concept to Map Global in-Cloud Winds, Precipitation and Cloud Properties , 2020, 2020 IEEE Radar Conference (RadarConf20).

[21]  Sami G. Tantawi,et al.  Design and demonstration of a distributed-coupling linear accelerator structure , 2020 .

[22]  Peng Zhang,et al.  Guest Editorial The Eighteenth Special Issue on High-Power Microwave and Millimeter-Wave Generation , 2020, IEEE Transactions on Plasma Science.

[23]  Damien F. G. Minenna,et al.  Technology, Assembly, and Test of a W-Band Traveling Wave Tube for New 5G High-Capacity Networks , 2020, IEEE Transactions on Electron Devices.

[24]  K. Shimamura,et al.  Wireless Power Transmission Efficiency for Microwave Rocket Using 28 GHz Gyrotron , 2020 .

[25]  Svilen Sabchevski,et al.  The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging , 2020, Applied Sciences.

[26]  Manfred Thumm,et al.  State-of-the-art of high power gyro-devices and free electron masers update 2003 , 2004 .

[27]  M. Thumm,et al.  Coaxial multistage depressed collector design for high power gyrotrons based on E×B concept , 2019, Physics of Plasmas.

[28]  G. Gantenbein,et al.  Automated mode recovery for gyrotrons demonstrated at Wendelstein 7-X , 2019, Fusion Engineering and Design.

[29]  R. Griffin,et al.  Pulsed Dynamic Nuclear Polarization , 2019 .

[30]  Youji Someya,et al.  Conceptual design of Japan’s fusion DEMO reactor (JADEMO) and superconducting coil issues , 2019, Journal of Physics: Conference Series.

[31]  R. Griffin,et al.  High frequency dynamic nuclear polarization: New directions for the 21st century. , 2019, Journal of magnetic resonance.

[32]  Danielle A. Simmons,et al.  Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. , 2019, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[33]  C. Darbos,et al.  Development of the first ITER gyrotron in QST , 2019, Nuclear Fusion.

[34]  G. Bernard,et al.  Instrumentation for High‐field Dynamic Nuclear Polarization NMR Spectroscopy , 2019 .

[35]  Peter G Maxim,et al.  PHASER: A platform for clinical translation of FLASH cancer radiotherapy. , 2019, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[36]  A. Dimitriadis,et al.  Improved waveguide coupling for 1.3 mm MAS DNP probes at 263 GHz. , 2019, Journal of magnetic resonance.

[37]  J. Puech,et al.  80 to 100 Watts TWT in Q-band for Space Downlink Communication , 2019, International Vacuum Electronics Conference.

[38]  J. Hesler,et al.  Efficient 263 GHz magic angle spinning DNP at 100 K using solid-state diode sources. , 2019, Solid state nuclear magnetic resonance.

[39]  I. T. Chapman,et al.  UKAEA capabilities to address the challenges on the path to delivering fusion power , 2019, Philosophical Transactions of the Royal Society A.

[40]  A. Roitman,et al.  Opportunities and Challenges for EIK's in DNP NMR Applications , 2018, International Conference on Infrared, Millimeter, and Terahertz Waves.

[41]  K. Felch,et al.  Demonstration of a 593 GHz Gyrotron for DNP , 2018, International Conference on Infrared, Millimeter, and Terahertz Waves.

[42]  J. Bourhis,et al.  The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients , 2018, Clinical Cancer Research.

[43]  R. Carter Microwave and RF Vacuum Electronic Power Sources , 2018 .

[44]  Erika L. Sesti,et al.  Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. , 2018, Journal of magnetic resonance.

[45]  Sami Tantawi,et al.  New Geometrical-Optimization Approach using Splines for Enhanced Accelerator Cavities' Performance , 2018 .

[46]  J. Lewandowski,et al.  Development for a supercompact X -band pulse compression system and its application at SLAC , 2017 .

[47]  John Jelonnek,et al.  Design considerations for future DEMO gyrotrons: A review on related gyrotron activities within EUROfusion , 2017 .

[48]  M. Shapiro,et al.  Photonic-band-gap gyrotron amplifier with picosecond pulses. , 2017, Applied physics letters.

[49]  Kjell Eriksson,et al.  Very high‐energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS , 2017, Medical physics.

[50]  Yasuhisa Oda,et al.  Multi-Frequency, MW-Power Triode Gyrotron Having a Uniform Directional Beam , 2017 .

[51]  F. Rostan,et al.  The MetOp-SG SCA high power amplifier , 2017, 2017 Eighteenth International Vacuum Electronics Conference (IVEC).

[52]  A. Roitman,et al.  Development of sub-millimeter high power compact EIKs for DNP and radar applications , 2017, International Vacuum Electronics Conference.

[53]  Michael Ludwig,et al.  An overview of European spaceborne vacuum tube amplifiers and system needs , 2017, 2017 Eighteenth International Vacuum Electronics Conference (IVEC).

[54]  Rosario Martorana,et al.  Pre-development of a C-band klystron intended for synthetic aperture radar in space application , 2017, 2017 Eighteenth International Vacuum Electronics Conference (IVEC).

[55]  G. Denisov New trends in gyrotron development , 2017 .

[56]  Richard Kowalczyk,et al.  High efficiency E-band MPM for communications applications , 2016, 2016 IEEE International Vacuum Electronics Conference (IVEC).

[57]  T. Fujiwara,et al.  Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. , 2016, Journal of magnetic resonance.

[58]  M. Blank,et al.  Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR. , 2016, Journal of magnetic resonance.

[59]  Carter M. Armstrong,et al.  The quest for the ultimate vacuum tube , 2015, IEEE Spectrum.

[60]  M. Slade,et al.  Recent Goldstone radar observations of selected near-Earth asteroids less than 140 m in diameter , 2015, Proceedings of the International Astronomical Union.

[61]  P. Birtel,et al.  Thales 300 Watt Ku-Band radiation and conduction cooled Travelling Wave Tube , 2015, International Vacuum Electronics Conference.

[62]  Jun Ho Yeom,et al.  Design concept of K-DEMO for near-term implementation , 2015 .

[63]  R. Griffin,et al.  Mechanisms of dynamic nuclear polarization in insulating solids. , 2015, Journal of magnetic resonance.

[64]  D. Campbell,et al.  Preface to Special Topic: ITER , 2015 .

[65]  Lorenzo Figini,et al.  The targeted heating and current drive applications for the ITER electron cyclotron system , 2015 .

[66]  A. Chirkov,et al.  Progress of 1.5–1.7 MW/170 GHz gyrotron development , 2013, International Conference on Infrared, Millimeter, and Terahertz Waves.

[67]  G. Travish,et al.  Demonstration of electron acceleration in a laser-driven dielectric microstructure , 2013, Nature.

[68]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[69]  M. S. Sherwin,et al.  Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser , 2012, Nature.

[70]  P. Woskov,et al.  Low-loss Transmission Lines for High-power Terahertz Radiation , 2012, Journal of infrared, millimeter and terahertz waves.

[71]  A. Torrezan,et al.  Operation of a Continuously Frequency-Tunable Second-Harmonic CW 330-GHz Gyrotron for Dynamic Nuclear Polarization , 2011, IEEE Transactions on Electron Devices.

[72]  P. Woskov,et al.  Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe. , 2011, Journal of magnetic resonance.

[73]  A. G. Litvak,et al.  Development in Russia of Megawatt Power Gyrotrons for Fusion , 2011 .

[74]  E. Reijerse High-Frequency EPR Instrumentation , 2009 .

[75]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Giovanni Ramponi,et al.  Overview of the ITER EC upper launcher , 2008 .

[77]  Y. R. Martin,et al.  Third-harmonic, top-launch, ECRH experiments on TCV tokamak , 2005 .

[78]  P. Woskov,et al.  Corrugated waveguide and directional coupler for CW 250-GHz gyrotron DNP experiments , 2005, IEEE Transactions on Microwave Theory and Techniques.

[79]  Robert J. Barker,et al.  Modern Microwave and Millimeter-Wave Power Electronics , 2005 .

[80]  P. L. Mondino,et al.  Development of a 2-MW, CW Coaxial Gyrotron at 70 GHz and Test Facility for ITER , 2005 .

[81]  R. Griffin,et al.  Dynamic nuclear polarization with biradicals. , 2004, Journal of the American Chemical Society.

[82]  G. Gantenbein,et al.  The 10 MW ECRH and CD System for W7‐X , 2003 .

[83]  Aripin,et al.  High Power, Frequency Tunable, Submillimeter Wave ESR Device Using a Gyrotron as a Radiation Source , 2000 .

[84]  Tran M.Q.,et al.  DESIGN AND INSTALLATION OF THE ELECTRON CYCLOTRON WAVE SYSTEM FOR THE TCV TOKAMAK , 1997 .

[85]  Lino Becerra,et al.  A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies , 1995 .

[86]  A. S. Gilmour Principles of Traveling Wave Tubes , 1994 .

[87]  C. P. Moeller,et al.  HE11 mitre bends and gaps in a circular corrugated waveguide , 1994 .

[88]  M. Petelin Physics of advanced gyrotrons , 1993 .

[89]  Temkin,et al.  Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. , 1993, Physical review letters.

[90]  G. A. Loew,et al.  SLED: A Method of Doubling SLAC's Energy , 1974 .

[91]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[92]  A. Overhauser Polarization of Nuclei in Metals , 1953 .

[93]  Charles P. Slichter,et al.  Polarization of Nuclear Spins in Metals , 1953 .