Spatial impulse response of lithographic infrared antennas.

We present measurements of the spatial response of infrared dipole and bow-tie lithographic antennas. Focused 10.6-microm radiation was scanned in two dimensions across the receiving area of each antenna. Deconvolution of the beam profile allowed the spatial response to be measured. The in-plane width of the antenna's spatial response extends approximately one dielectric wavelength beyond the metallic structure. Determination of an antenna's spatial response is important for several reasons. The power collected by the antenna can be calculated, if the collection area and the input irradiance (watts per square centimeter) are known. The actual power collected by the antenna is required for computation of responsivity and noise-equivalent power. In addition, the spatial response provides insight into the current-wave modes that propagate on an antenna and the nature of the fringe fields that exist in the adjacent dielectric.

[1]  Ingrid Wilke,et al.  Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation , 1994 .

[2]  D. B. Rutledge,et al.  Infrared and submillimetre antennas , 1978 .

[3]  T. K. Gustafson,et al.  Coupling characteristics of thin‐film metal‐oxide‐metal diodes at 10.6 μ , 1975 .

[4]  F. Kneubühl,et al.  Thin-film MOM-diodes for infrared detection , 1977 .

[5]  J. Whinnery,et al.  Characteristics of integrated MOM junctions at DC and at optical frequencies , 1978, IEEE Journal of Quantum Electronics.

[6]  D. L. Smythe,et al.  ac electron tunneling at infrared frequencies: Thin‐film M‐O‐M diode structure with broad‐band characteristics , 1974 .

[7]  Y. Suzaki,et al.  Measurement of the microm sized radius of Gaussian laser beam using the scanning knife-edge. , 1975, Applied optics.

[8]  Christophe Fumeaux,et al.  Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz , 1998 .

[9]  G. Mourou,et al.  Terahertz attenuation and dispersion characteristics of coplanar transmission lines , 1991 .

[10]  G D Boreman,et al.  Polarization response of asymmetric-spiral infrared antennas. , 1997, Applied optics.

[11]  C. Christodoulou,et al.  Modulation transfer function of antenna-coupled infrared detector arrays. , 1996, Applied optics.

[12]  Christophe Fumeaux,et al.  Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas , 1996 .

[13]  Erich N. Grossman,et al.  Lithographic spiral antennas at short wavelengths , 1991 .

[14]  A. Javan,et al.  FREQUENCY MIXING IN THE INFRARED AND FAR‐INFRARED USING A METAL‐TO‐METAL POINT CONTACT DIODE , 1968 .

[15]  Ingrid Wilke,et al.  Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation , 1994 .

[16]  E. tMesendanger,et al.  Thin-Film MOM-Diodes for Infrared Detection , 1977 .

[17]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  C. R. Brewitt-Taylor,et al.  Planar antennas on a dielectric surface , 1981 .

[20]  E. Dereniak,et al.  Infrared Detectors and Systems , 1996 .

[21]  Christophe Fumeaux,et al.  Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film NiNiONi diodes with difference frequencies up to 176 GHz , 1997 .

[22]  Gabriel M. Rebeiz,et al.  Bow-tie antennas on a dielectric half-space: Theory and experiment , 1987 .

[23]  Gabriel M. Rebeiz,et al.  Integrated-Circuit Antennas On Thin Membranes , 1987, Other Conferences.