Dual adaptive model predictive control

Abstract We present an adaptive dual model predictive controller ( dmpc ) that uses current and future parameter-estimation errors to minimize expected output error by optimally combining probing for uncertainty reduction with control of the nominal model. Our novel approach relies on orthonormal basis-function models to derive expressions for the predicted distributions for the output and unknown parameters, conditional on the future input sequence. Propagating the exact future statistics enables reformulating the original stochastic problem into a deterministic equivalent that illustrates the dual nature of the optimal control but is nonlinear and nonconvex. We further reformulate the nonlinear deterministic problem to pose an equivalent quadratically-constrained quadratic-programming ( qcqp ) problem that state-of-the-art algorithms can solve efficiently, providing the exact solution to the probabilistically constrained finite-horizon dual control problem. The adaptive dmpc solves this qcqp at each sampling time on a receding horizon; the adaptation is a result of updating the parameter estimates used by the dmpc to decide the control input. The paper demonstrates the application of dmpc to a single-input single-output ( siso ) system with unknown parameters. In the simulation example, the parameter estimates converge quickly and the probing vanishes with increasing accuracy and precision of the estimates, improving the future control performance.

[1]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[2]  K. Åström,et al.  Dual Control of an Integrator with Unknown Gain , 1986 .

[3]  Heinz Unbehauen,et al.  Adaptive predictive controllers based on orthonormal series representation , 1999 .

[4]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[5]  Eric Walter,et al.  Dual Control of Linearly Parameterised Models via Prediction of Posterior Densities , 1996, Eur. J. Control.

[6]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[7]  R. Kosut,et al.  How exciting can a signal really be , 1987 .

[8]  Iven M. Y. Mareels,et al.  Adaptive systems - an introduction , 1996, Systems and control.

[9]  Jong Min Lee,et al.  An approximate dynamic programming based approach to dual adaptive control , 2009 .

[10]  A. A. Feldbaum,et al.  DUAL CONTROL THEORY, IV , 1961 .

[11]  Bjarne A. Foss,et al.  Dual MPC for FIR Systems: Information Anticipation∗ , 2015 .

[12]  Karl Johan Åström,et al.  Control: A perspective , 2014, Autom..

[13]  A. Garulli,et al.  Block recursive parallelotopic bounding in set membership identification , 1998 .

[14]  Håkan Hjalmarsson,et al.  Experimental evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer , 2015 .

[15]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[16]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[17]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[18]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[19]  Kunal Kumar,et al.  Experimental Evaluation of a MIMO Adaptive Dual MPC , 2015 .

[20]  Robert R. Bitmead,et al.  Persistently exciting model predictive control , 2014 .

[21]  Bjarne A. Foss,et al.  MPC-based dual control with online experiment design , 2015 .

[22]  Lorenzo Fagiano,et al.  Adaptive receding horizon control for constrained MIMO systems , 2014, Autom..

[23]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[24]  Michael Nikolaou,et al.  Simultaneous Constrained Model Predictive Control and Identification of DARX Processes , 1998, Autom..

[25]  V. D.,et al.  Prof , 1973 .

[26]  Alan Schumitzky,et al.  Implicit dual control based on particle filtering and forward dynamic programming , 2008, International journal of adaptive control and signal processing.

[27]  B. Wahlberg,et al.  Constrained predictive control using orthogonal expansions , 1993 .

[28]  Karl Johan Åström,et al.  Adaptive Control (2 ed.) , 1995 .

[29]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[30]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[31]  B. Wahlberg System identification using Laguerre models , 1991 .

[32]  Y. Bar-Shalom,et al.  Dual effect, certainty equivalence, and separation in stochastic control , 1974 .

[33]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[34]  Brian D. O. Anderson,et al.  Adaptive systems, lack of persistency of excitation and bursting phenomena , 1985, Autom..

[35]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[36]  S. Khosravi,et al.  Constrained model predictive control of hypnosis , 2015 .

[37]  Sofie Haesaert,et al.  Data-driven and model-based verification via Bayesian identification and reachability analysis , 2017, Autom..

[38]  Johan Wieslander,et al.  An approach to adaptive control using real time identification , 1971 .

[39]  Y. Bar-Shalom Stochastic dynamic programming: Caution and probing , 1981 .

[40]  Yaakov Bar-Shalom,et al.  An actively adaptive control for linear systems with random parameters via the dual control approach , 1972, CDC 1972.

[41]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .