Dispersive censor of acoustic spacetimes with a shock-wave singularity
暂无分享,去创建一个
[1] I. Carusotto,et al. Analogue quantum simulation of the Hawking effect in a polariton superfluid , 2022, The European Physical Journal D.
[2] N. James,et al. Correlations on weakly time-dependent transcritical white-hole flows , 2021, Physical Review D.
[3] U. R. Fischer,et al. Analogue gravitational field from nonlinear fluid dynamics , 2021, Classical and Quantum Gravity.
[4] D. Faccio,et al. Measurement of Penrose Superradiance in a Photon Superfluid. , 2021, Physical review letters.
[5] M. Anderson,et al. Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes. , 2021, Physical review letters.
[6] U. R. Fischer,et al. Inherent nonlinearity of fluid motion and acoustic gravitational wave memory , 2020, Physical Review D.
[7] T. Jacobson,et al. Phonon redshift and Hubble friction in an expanding BEC , 2020, 2009.04512.
[8] J. Schmiedmayer,et al. Interferometric Unruh Detectors for Bose-Einstein Condensates. , 2020, Physical review letters.
[9] S. Weinfurtner,et al. Quasinormal Mode Oscillations in an Analogue Black Hole Experiment. , 2020, Physical review letters.
[10] G. Rousseaux,et al. Classical hydrodynamics for analogue space–times: open channel flows and thin films , 2020, Philosophical Transactions of the Royal Society A.
[11] N. James,et al. Scattering of Co-Current Surface Waves on an Analogue Black Hole. , 2018, Physical review letters.
[12] Stefano Liberati,et al. The Information Loss Problem: An Analogue Gravity Perspective , 2019, Entropy.
[13] D. Faccio,et al. Superradiant scattering in fluids of light , 2019, Physical Review D.
[14] J. Steinhauer,et al. Observation of thermal Hawking radiation and its temperature in an analogue black hole , 2018, Nature.
[15] M. Lewenstein,et al. Unruh effect for interacting particles with ultracold atoms , 2018, SciPost Physics.
[16] S. Datta. Acoustic analog of gravitational wave , 2018, Physical Review D.
[17] I. Fuentes,et al. Analogue simulation of gravitational waves in a 3+1 -dimensional Bose-Einstein condensate , 2017, Physical Review D.
[18] Zehua Tian,et al. Roton entanglement in quenched dipolar Bose-Einstein condensates , 2017, Physical Review A.
[19] T. Jacobson,et al. A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. , 2017, Physical review. X.
[20] R. Wald,et al. Gedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspun , 2017 .
[21] S. Weinfurtner,et al. Rotational superradiant scattering in a vortex flow , 2017, Nature Physics.
[22] S. Robertson,et al. Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables , 2017, 1705.06648.
[23] U. R. Fischer,et al. Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Quasi-Two-Dimensional Dipolar Condensates. , 2016, Physical review letters.
[24] A. Fabbri,et al. Quantum dress for a naked singularity , 2016, 1605.06078.
[25] D. Faccio,et al. Emergent geometries and nonlinear-wave dynamics in photon fluids , 2015, Scientific Reports.
[26] G. Rousseaux,et al. Observation of Noise Correlated by the Hawking Effect in a Water Tank. , 2015, Physical review letters.
[27] J. Steinhauer. Observation of quantum Hawking radiation and its entanglement in an analogue black hole , 2015, Nature Physics.
[28] S. Liberati,et al. Rotating black holes in a draining bathtub: superradiant scattering of gravity waves , 2014, 1411.1662.
[29] I. Carusotto,et al. Supplemental Information : An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons , 2014 .
[30] E. Bittencourt,et al. Geometric scalar theory of gravity , 2012, 1212.0770.
[31] M. Visser,et al. Analogue Gravity , 2005, Living reviews in relativity.
[32] G. Rousseaux,et al. Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: a hydrodynamic white hole. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[33] G. Lawrence,et al. Measurement of stimulated Hawking emission in an analogue system. , 2010, Physical review letters.
[34] R. Parentani,et al. Black hole lasers in Bose–Einstein condensates , 2010, 1005.4024.
[35] J. Steinhauer,et al. Realization of a sonic black hole analog in a Bose-Einstein condensate. , 2009, Physical review letters.
[36] H. Rubinsztein-Dunlop,et al. Observation of shock waves in a large Bose-Einstein condensate , 2009, 0907.3989.
[37] R. Parentani,et al. Black hole radiation in Bose-Einstein condensates , 2009, 0905.3634.
[38] G. Matsas,et al. Can quantum mechanics fool the cosmic censor , 2009, 0905.1077.
[39] C. Gardiner,et al. Cosmological particle production in emergent rainbow spacetimes , 2008, 0801.2673.
[40] S. Hod. Return of the quantum cosmic censor , 2008, 0810.0079.
[41] F. Marino. Acoustic black holes in a two-dimensional 'photon-fluid' , 2008, 0808.1624.
[42] S. Hod. Weak cosmic censorship: as strong as ever. , 2008, Physical review letters.
[43] I. Carusotto,et al. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates , 2008, 0803.0507.
[44] J. Cirac,et al. Methods for detecting acceleration radiation in a Bose-Einstein condensate. , 2007, Physical review letters.
[45] M. Visser. Emergent rainbow spacetimes: Two pedagogical examples , 2007, 0712.0810.
[46] G. Matsas,et al. Overspinning a nearly extreme charged black hole via a quantum tunneling process. , 2007, Physical review letters.
[47] G. Volovik. Hydraulic jump as a white hole , 2005, physics/0508215.
[48] C. Chevallier,et al. The Hydraulic Jump in Liquid Helium , 2005, physics/0508200.
[49] R. Schutzhold,et al. Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates , 2004, cond-mat/0406470.
[50] B. Damski. Formation of shock waves in a Bose-Einstein condensate (8 pages) , 2003, cond-mat/0309421.
[51] P. Fedichev,et al. Cosmological quasiparticle production in harmonically trapped superfluid gases , 2003, cond-mat/0303063.
[52] M. Visser,et al. Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions , 2003, cond-mat/0307491.
[53] W. Schneider,et al. A multiple scales analysis of the undular hydraulic jump in turbulent open channel flow , 2003 .
[54] P. Fedichev,et al. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas. , 2003, Physical review letters.
[55] S. Basak,et al. ‘Superresonance’ from a rotating acoustic black hole , 2002, gr-qc/0203059.
[56] R. Schutzhold,et al. Gravity wave analogues of black holes , 2002, gr-qc/0205099.
[57] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[58] M. Visser,et al. Analogue gravity from field theory normal modes , 2001, gr-qc/0104001.
[59] M. Visser,et al. Analogue gravity from Bose-Einstein condensates , 2000, gr-qc/0011026.
[60] A. M. Kamchatnov,et al. Nonlinear Periodic Waves and Their Modulations: An Introductory Course , 2000 .
[61] J. Cirac,et al. Sonic analog of gravitational black holes in bose-einstein condensates , 2000, Physical review letters.
[62] V. Hubeny. Overcharging a black hole and cosmic censorship , 1998, gr-qc/9808043.
[63] T. Jacobson,et al. Black hole lasers , 1998, hep-th/9806203.
[64] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[65] R. Penrose. The question of cosmic censorship , 1999 .
[66] Hubert Chanson,et al. Characteristics of Undular Hydraulic Jumps: Experiments and Analysis , 1998 .
[67] T. P. Singh. Gravitational Collapse and Cosmic Censorship , 1996, gr-qc/9606016.
[68] M. Roberts. Scalar field counterexamples to the cosmic censorship hypothesis , 1989 .
[69] D. Christodoulou. Violation of cosmic censorship in the gravitational collapse of a dust cloud , 1984 .
[70] J. Thomas King,et al. Introduction to numerical computation , 1984 .
[71] W. Unruh. Experimental black hole evaporation , 1981 .
[72] Centro internazionale per la ricerca matematica,et al. Analytic solutions of partial differential equations , 1981 .
[73] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[74] S. Hawking. Breakdown of Predictability in Gravitational Collapse , 1976 .
[75] R. Wald. Gedanken experiments to destroy a black hole , 1974 .
[76] A. Gurevich,et al. Nonstationary structure of a collisionless shock wave , 1973 .
[77] R. Wagoner,et al. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .
[78] R. Johnson. Shallow Water Waves on a Viscous Fluid—The Undular Bore , 1972 .
[79] R. Penrose,et al. The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[80] S. Hawking. The occurrence of singularities in cosmology. ɪɪɪ. Causality and singularities , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[81] S. Hawking. The occurrence of singularities in cosmology , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[82] S. Hawking. The occurrence of singularities in cosmology. II , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[83] Lord Rayleigh,et al. On the Theory of Long Waves and Bores , 1914 .
[84] B. Riemann. über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .