Dispersive censor of acoustic spacetimes with a shock-wave singularity

A dispersionless shock wave in a fluid without friction develops an acoustic spacetime singularity which is naked (not hidden by a horizon). We show that this naked nondispersive shock-wave singularity is prohibited to form in a Bose-Einstein condensate, due to the microscopic structure of the underlying ${\rm a}\!{\rm e}$ther and the resulting effective trans-Planckian dispersion. Approaching the instant of shock $t_{\rm shock}$, rapid spatial oscillations of density and velocity develop around the shock location, which begin to emerge already slightly before $t_{\rm shock}$, due to the quantum pressure in the condensate. These oscillations render the acoustic spacetime structure completely regular, and therefore lead to a removal (censoring) of the spacetime singularity. Thus, distinct from the cosmic censorship hypothesis of Penrose formulated within Einsteinian gravity, the quantum pressure in Bose-Einstein condensates censors (prohibits) the formation of a naked shock-wave singularity, instead of hiding it behind a horizon.

[1]  I. Carusotto,et al.  Analogue quantum simulation of the Hawking effect in a polariton superfluid , 2022, The European Physical Journal D.

[2]  N. James,et al.  Correlations on weakly time-dependent transcritical white-hole flows , 2021, Physical Review D.

[3]  U. R. Fischer,et al.  Analogue gravitational field from nonlinear fluid dynamics , 2021, Classical and Quantum Gravity.

[4]  D. Faccio,et al.  Measurement of Penrose Superradiance in a Photon Superfluid. , 2021, Physical review letters.

[5]  M. Anderson,et al.  Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes. , 2021, Physical review letters.

[6]  U. R. Fischer,et al.  Inherent nonlinearity of fluid motion and acoustic gravitational wave memory , 2020, Physical Review D.

[7]  T. Jacobson,et al.  Phonon redshift and Hubble friction in an expanding BEC , 2020, 2009.04512.

[8]  J. Schmiedmayer,et al.  Interferometric Unruh Detectors for Bose-Einstein Condensates. , 2020, Physical review letters.

[9]  S. Weinfurtner,et al.  Quasinormal Mode Oscillations in an Analogue Black Hole Experiment. , 2020, Physical review letters.

[10]  G. Rousseaux,et al.  Classical hydrodynamics for analogue space–times: open channel flows and thin films , 2020, Philosophical Transactions of the Royal Society A.

[11]  N. James,et al.  Scattering of Co-Current Surface Waves on an Analogue Black Hole. , 2018, Physical review letters.

[12]  Stefano Liberati,et al.  The Information Loss Problem: An Analogue Gravity Perspective , 2019, Entropy.

[13]  D. Faccio,et al.  Superradiant scattering in fluids of light , 2019, Physical Review D.

[14]  J. Steinhauer,et al.  Observation of thermal Hawking radiation and its temperature in an analogue black hole , 2018, Nature.

[15]  M. Lewenstein,et al.  Unruh effect for interacting particles with ultracold atoms , 2018, SciPost Physics.

[16]  S. Datta Acoustic analog of gravitational wave , 2018, Physical Review D.

[17]  I. Fuentes,et al.  Analogue simulation of gravitational waves in a 3+1 -dimensional Bose-Einstein condensate , 2017, Physical Review D.

[18]  Zehua Tian,et al.  Roton entanglement in quenched dipolar Bose-Einstein condensates , 2017, Physical Review A.

[19]  T. Jacobson,et al.  A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. , 2017, Physical review. X.

[20]  R. Wald,et al.  Gedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspun , 2017 .

[21]  S. Weinfurtner,et al.  Rotational superradiant scattering in a vortex flow , 2017, Nature Physics.

[22]  S. Robertson,et al.  Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables , 2017, 1705.06648.

[23]  U. R. Fischer,et al.  Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Quasi-Two-Dimensional Dipolar Condensates. , 2016, Physical review letters.

[24]  A. Fabbri,et al.  Quantum dress for a naked singularity , 2016, 1605.06078.

[25]  D. Faccio,et al.  Emergent geometries and nonlinear-wave dynamics in photon fluids , 2015, Scientific Reports.

[26]  G. Rousseaux,et al.  Observation of Noise Correlated by the Hawking Effect in a Water Tank. , 2015, Physical review letters.

[27]  J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole , 2015, Nature Physics.

[28]  S. Liberati,et al.  Rotating black holes in a draining bathtub: superradiant scattering of gravity waves , 2014, 1411.1662.

[29]  I. Carusotto,et al.  Supplemental Information : An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons , 2014 .

[30]  E. Bittencourt,et al.  Geometric scalar theory of gravity , 2012, 1212.0770.

[31]  M. Visser,et al.  Analogue Gravity , 2005, Living reviews in relativity.

[32]  G. Rousseaux,et al.  Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump: a hydrodynamic white hole. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Lawrence,et al.  Measurement of stimulated Hawking emission in an analogue system. , 2010, Physical review letters.

[34]  R. Parentani,et al.  Black hole lasers in Bose–Einstein condensates , 2010, 1005.4024.

[35]  J. Steinhauer,et al.  Realization of a sonic black hole analog in a Bose-Einstein condensate. , 2009, Physical review letters.

[36]  H. Rubinsztein-Dunlop,et al.  Observation of shock waves in a large Bose-Einstein condensate , 2009, 0907.3989.

[37]  R. Parentani,et al.  Black hole radiation in Bose-Einstein condensates , 2009, 0905.3634.

[38]  G. Matsas,et al.  Can quantum mechanics fool the cosmic censor , 2009, 0905.1077.

[39]  C. Gardiner,et al.  Cosmological particle production in emergent rainbow spacetimes , 2008, 0801.2673.

[40]  S. Hod Return of the quantum cosmic censor , 2008, 0810.0079.

[41]  F. Marino Acoustic black holes in a two-dimensional 'photon-fluid' , 2008, 0808.1624.

[42]  S. Hod Weak cosmic censorship: as strong as ever. , 2008, Physical review letters.

[43]  I. Carusotto,et al.  Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates , 2008, 0803.0507.

[44]  J. Cirac,et al.  Methods for detecting acceleration radiation in a Bose-Einstein condensate. , 2007, Physical review letters.

[45]  M. Visser Emergent rainbow spacetimes: Two pedagogical examples , 2007, 0712.0810.

[46]  G. Matsas,et al.  Overspinning a nearly extreme charged black hole via a quantum tunneling process. , 2007, Physical review letters.

[47]  G. Volovik Hydraulic jump as a white hole , 2005, physics/0508215.

[48]  C. Chevallier,et al.  The Hydraulic Jump in Liquid Helium , 2005, physics/0508200.

[49]  R. Schutzhold,et al.  Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates , 2004, cond-mat/0406470.

[50]  B. Damski Formation of shock waves in a Bose-Einstein condensate (8 pages) , 2003, cond-mat/0309421.

[51]  P. Fedichev,et al.  Cosmological quasiparticle production in harmonically trapped superfluid gases , 2003, cond-mat/0303063.

[52]  M. Visser,et al.  Probing semiclassical analog gravity in Bose-Einstein condensates with widely tunable interactions , 2003, cond-mat/0307491.

[53]  W. Schneider,et al.  A multiple scales analysis of the undular hydraulic jump in turbulent open channel flow , 2003 .

[54]  P. Fedichev,et al.  Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas. , 2003, Physical review letters.

[55]  S. Basak,et al.  ‘Superresonance’ from a rotating acoustic black hole , 2002, gr-qc/0203059.

[56]  R. Schutzhold,et al.  Gravity wave analogues of black holes , 2002, gr-qc/0205099.

[57]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[58]  M. Visser,et al.  Analogue gravity from field theory normal modes , 2001, gr-qc/0104001.

[59]  M. Visser,et al.  Analogue gravity from Bose-Einstein condensates , 2000, gr-qc/0011026.

[60]  A. M. Kamchatnov,et al.  Nonlinear Periodic Waves and Their Modulations: An Introductory Course , 2000 .

[61]  J. Cirac,et al.  Sonic analog of gravitational black holes in bose-einstein condensates , 2000, Physical review letters.

[62]  V. Hubeny Overcharging a black hole and cosmic censorship , 1998, gr-qc/9808043.

[63]  T. Jacobson,et al.  Black hole lasers , 1998, hep-th/9806203.

[64]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[65]  R. Penrose The question of cosmic censorship , 1999 .

[66]  Hubert Chanson,et al.  Characteristics of Undular Hydraulic Jumps: Experiments and Analysis , 1998 .

[67]  T. P. Singh Gravitational Collapse and Cosmic Censorship , 1996, gr-qc/9606016.

[68]  M. Roberts Scalar field counterexamples to the cosmic censorship hypothesis , 1989 .

[69]  D. Christodoulou Violation of cosmic censorship in the gravitational collapse of a dust cloud , 1984 .

[70]  J. Thomas King,et al.  Introduction to numerical computation , 1984 .

[71]  W. Unruh Experimental black hole evaporation , 1981 .

[72]  Centro internazionale per la ricerca matematica,et al.  Analytic solutions of partial differential equations , 1981 .

[73]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[74]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[75]  R. Wald Gedanken experiments to destroy a black hole , 1974 .

[76]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[77]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[78]  R. Johnson Shallow Water Waves on a Viscous Fluid—The Undular Bore , 1972 .

[79]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[80]  S. Hawking The occurrence of singularities in cosmology. ɪɪɪ. Causality and singularities , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  S. Hawking The occurrence of singularities in cosmology , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[82]  S. Hawking The occurrence of singularities in cosmology. II , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[83]  Lord Rayleigh,et al.  On the Theory of Long Waves and Bores , 1914 .

[84]  B. Riemann über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite , 1860 .