Template-Free Synthesis of a Macrocyclic Bis(pyridine-dienamine) Proligand and Metal Complexes of Its Bis(pyridine-diimine) and Bis(pyridine-dienamido) Forms.

We describe the template-free synthesis of the bis(pyridine-dienamine) proligand [4,5-(m-xylylenediamine)NH-C═(CH)(9-butyl-octahydroacridine)]2 (2'), a variant of Burrows's macrocyclic bis(pyridine-diimine) (bis-PDI) ligand [2,6-(m-xylylenediamine)N═C(py)]2 (A), using octahydroacridine as the ligand backbone. The octahydroacridine backbone favors macrocyclization by constraining the PDI units in the (s-cis)2 conformation. The template-free synthesis of 2' enables facile access to a wide array of bis-PDI and bis(pyridine-dienamido) (bis-PDE) metal complexes. Five-coordinate binuclear bis-PDI (2)M2Cl4 complexes {2 = [4,5-(m-xylylenediamine)N═C(9-butyl-octahydroacridine)]2; M = Zn, Co, or Fe} and a four-coordinate bis-PDI [(2)Pd2Br2][B(3,5-(CF3)2-Ph)4]2 complex were synthesized and characterized. (2)Zn2Cl4 undergoes macrocyclic ring inversion on the nuclear magnetic resonance (NMR) time scale with a free energy barrier ΔG⧧ of 15.5(3) kcal/mol at 295 K. In contrast, (2)Fe2Cl4 and (2)Co2Cl4 undergo slow ring inversion on the NMR chemical shift time scale at 295 K. The amine elimination reaction of 2' with Zr(NMe2)4 yields the bis-PDE complex (2'-4H)Zr2(NMe2)4, which was alkylated with AlMe3 and Al(CH2SiMe3)3 to generate (2'-4H)Zr2Me4 and (2'-4H)Zr2(CH2SiMe3)2(NMe2)2, respectively.

[1]  D. Dickie,et al.  Cooperative H2 Activation across a Metal–Metal Multiple Bond and Hydrogenation Reactions Catalyzed by a Zr/Co Heterobimetallic Complex , 2019, ACS Catalysis.

[2]  Wen‐Hua Sun,et al.  Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts , 2018, Coordination Chemistry Reviews.

[3]  K. Osakada,et al.  Double-Decker-Type Dipalladium Catalysts for Copolymerization of Ethylene with Acrylic Anhydride , 2018, Macromolecules.

[4]  G. Coates,et al.  Bimetallic Chromium Catalysts with Chain Transfer Agents: A Route to Isotactic Poly(propylene oxide)s with Narrow Dispersities. , 2018, Angewandte Chemie.

[5]  Dunwei Wang,et al.  Electrochemically Switchable Ring-Opening Polymerization of Lactide and Cyclohexene Oxide. , 2018, Journal of the American Chemical Society.

[6]  Min Chen,et al.  Ethylene Polymerization by Dinuclear Xanthene-Bridged Imino- and Aminopyridyl Nickel Complexes , 2017 .

[7]  J. W. Beattie,et al.  Oxalate-templated synthesis of di-zinc macrocycles , 2017 .

[8]  Andrew J. P. White,et al.  Dizinc Lactide Polymerization Catalysts: Hyperactivity by Control of Ligand Conformation and Metallic Cooperativity , 2016, Angewandte Chemie.

[9]  N. Mankad,et al.  Selectivity Effects in Bimetallic Catalysis. , 2016, Chemistry.

[10]  A. Ghorbani‐Choghamarani,et al.  Synthesis, characterization and structural study of a phosphonium salt containing the [Pd 2 Br 6 ] 2− ion and its application as a novel, efficient and renewable heterogeneous catalyst for amination of aryl halides and the Stille cross-coupling reaction , 2016 .

[11]  P. Chirik,et al.  Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes , 2015, Science.

[12]  B. Small Discovery and Development of Pyridine-bis(imine) and Related Catalysts for Olefin Polymerization and Oligomerization. , 2015, Accounts of chemical research.

[13]  Wen‐Hua Sun,et al.  Progression of Diiminopyridines: From Single Application to Catalytic Versatility , 2015 .

[14]  P. Chirik,et al.  Cobalt-Catalyzed [2π + 2π] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates , 2015, Journal of the American Chemical Society.

[15]  A. Pöthig,et al.  Iron Complexes of a Macrocyclic N-Heterocyclic Carbene/Pyridine Hybrid Ligand , 2015 .

[16]  Francesco Corona,et al.  Accelerated isotope fine structure calculation using pruned transition trees. , 2015, Analytical chemistry.

[17]  M. Rezaeivala,et al.  Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety – The first 50 years , 2014 .

[18]  Tanya K. Ronson,et al.  Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes. , 2014, Angewandte Chemie.

[19]  Zhong‐Xia Wang,et al.  Mono- and Dinuclear Pincer Nickel Catalyzed Activation and Transformation of C–Cl, C–N, and C–O Bonds , 2014 .

[20]  K. Osakada,et al.  Ethylene Polymerization at High Temperatures Catalyzed by Double-Decker-Type Dinuclear Iron and Cobalt Complexes: Dimer Effect on Stability of the Catalyst and Polydispersity of the Product , 2014 .

[21]  T. Marks,et al.  Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects. , 2014, Accounts of chemical research.

[22]  K. Osakada,et al.  Selective Formation of Ethyl- and/or Propyl-branched Oligoethylene Using Double-decker-type Dinuclear Fe Complexes as the Catalyst , 2014 .

[23]  Wen‐Hua Sun,et al.  Biphenyl-bridged 6-(1-aryliminoethyl)-2-iminopyridylcobalt complexes: Synthesis, characterization and ethylene polymerization behavior , 2014 .

[24]  Anne M. LaPointe,et al.  Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. , 2013, Journal of the American Chemical Society.

[25]  T. Zhao,et al.  Synthesis, characterization and ethylene polymerization behavior of binuclear iron complexes bearing N,N′-bis(1-(6-(1-(arylimino)ethyl) pyridin-2-yl)ethylidene)benzidines , 2013 .

[26]  J. Byers,et al.  Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. , 2013, Journal of the American Chemical Society.

[27]  N. Mankad,et al.  Base metal catalysts for photochemical C-H borylation that utilize metal-metal cooperativity. , 2013, Journal of the American Chemical Society.

[28]  D. Stalke,et al.  Lewis base mediated autoionization of GeCl2 and SnCl2. , 2012, Journal of the American Chemical Society.

[29]  K. N. Houk,et al.  Strained cyclophane macrocycles: impact of progressive ring size reduction on synthesis and structure. , 2012, Journal of the American Chemical Society.

[30]  T. Agapie,et al.  Bimetallic effects on ethylene polymerization in the presence of amines: inhibition of the deactivation by Lewis bases. , 2012, Journal of the American Chemical Society.

[31]  G. Coates,et al.  Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization , 2011 .

[32]  C. Ha,et al.  Iron and Cobalt Complexes of 2,3,7,8-Tetrahydroacridine-4,5(1H,6H)-diimine Sterically Modulated by Substituted Aryl Rings for the Selective Oligomerization to Polymerization of Ethylene , 2011 .

[33]  T. Marks,et al.  Multinuclear olefin polymerization catalysts. , 2011, Chemical reviews.

[34]  Ryan C. Jeske,et al.  Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. , 2010, Journal of the American Chemical Society.

[35]  F. Doğan,et al.  Palladium(II) Complexes Containing 2,6-Bis(Imino)Pyridines: Synthesis, Characterization, Thermal Study, and Catalytic Activity in Suzuki Reactions , 2010 .

[36]  R. He,et al.  Bis(imino)pyridine palladium(II) complexes: Synthesis, structure and catalytic activity , 2009 .

[37]  G. Erker,et al.  Bis(iminoethyl)pyridine Systems with a Pendant Alkenyl Group. Part A: Cobalt and Iron Complexes and Their Catalytic Behavior† , 2008 .

[38]  Martin J. Hanton,et al.  Bis(imino)pyridine Complexes of the First-Row Transition Metals: Alternative Methods of Activation , 2008 .

[39]  Lincai Wang,et al.  Methylene bridged binuclear bis(imino)pyridyl iron(II) complexes and their use as catalysts together with Al(i-Bu)3 for ethylene polymerization , 2008 .

[40]  A. Ionkin,et al.  High‐temperature catalysts for the production of α‐olefins based on iron(II) and iron(III) tridentate bis(imino)pyridine complexes modified by nitrilo group , 2008 .

[41]  G. Solan,et al.  Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. , 2007, Chemical reviews.

[42]  F. Pelascini,et al.  Modified Pyridine-Bis(imine) Iron and Cobalt Complexes: Synthesis, Structure, and Ethylene Polymerization Study , 2006 .

[43]  T. Marks,et al.  Nuclearity and cooperativity effects in binuclear catalysts and cocatalysts for olefin polymerization , 2006, Proceedings of the National Academy of Sciences.

[44]  H. Alt,et al.  Transition metal complexes of polymeric Schiff bases as catalyst precursors for the polymerization of ethylene , 2006 .

[45]  Y. Mu,et al.  Synthesis, structures and luminescent properties of [ZnCl2(2,6-bis {1-(phenylimino)ethyl}pyridine)] , 2006 .

[46]  P. Chirik,et al.  Bis(imino)pyridine ligand deprotonation promoted by a transient iron amide. , 2006, Inorganic chemistry.

[47]  S. Ivanchev,et al.  New Multifunctional Bis(imino)pyridine-Iron Chloride Complexes and Ethylene Polymerization Catalysts on Their Basis , 2005 .

[48]  Y. Mu,et al.  Blue luminescent zinc(II) complexes of 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine and 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine , 2005 .

[49]  Zesheng Li,et al.  Ethylene polymerization with a highly active and long-lifetime macrocycle trinuclear 2,6-bis(imino)pyridyliron , 2005 .

[50]  Birgit Weber,et al.  Synthesis and magnetic properties of new dinuclear iron(II) complexes of a phenylene‐bridge shiff base analogue dinucleating ligand , 2005 .

[51]  A. Möller,et al.  Preparation, characterization, and magnetic behavior of the ln derivatives (ln = nd, la) of a 2,6-diiminepyridine ligand and corresponding dianion. , 2004, Inorganic chemistry.

[52]  W. Linert,et al.  Metal Mediated Template Synthesis of Ligands , 2004 .

[53]  G. Coates,et al.  Stereochemistry of epoxide carbonylation using bimetallic Lewis acid/metal carbonyl complexes , 2004 .

[54]  David R. Moore,et al.  Mechanism of the alternating copolymerization of epoxides and CO2 using beta-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. , 2003, Journal of the American Chemical Society.

[55]  S. Rothenberger,et al.  9‐n‐Butyl‐1,2,3,4,5,6,7,8‐Octahydroacridin‐4‐ol , 2003 .

[56]  H. Sakiyama,et al.  Synthesis, structure, and magnetic properties of dinuclear cobalt(II) complexes with a new phenol-based dinucleating ligand with four hydroxyethyl chelating arms. , 2002, Inorganic chemistry.

[57]  S. Gambarotta,et al.  Mono- and Zerovalent Manganese Alkyl Complexes Supported by the α,α‘-Diiminato Pyridine Ligand: Alkyl Stabilization at the Expense of Catalytic Performance , 2002 .

[58]  V. Catalano,et al.  Synthesis of 1,2,3,4,5,6,7,8-octahydroacridine via condensation of cyclohexanone with formaldehyde. , 2001, The Journal of organic chemistry.

[59]  Gregory A. Solan,et al.  IRON AND COBALT ETHYLENE POLYMERIZATION CATALYSTS BEARING 2,6-BIS(IMINO)PYRIDYL LIGANDS : SYNTHESIS, STRUCTURES, AND POLYMERIZATION STUDIES , 1999 .

[60]  R. L. Dekock,et al.  Metal−Metal Cooperativity Effects in Promoting C−H Bond Cleavage of a Methyl Group by an Adjacent Metal Center , 1999 .

[61]  Maurice Brookhart,et al.  Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene , 1998 .

[62]  C. Burrows,et al.  Preparation and structural characterization of dicopper(II) and dinickel(II) imidazolate-bridged macrocyclic Schiff base complexes , 1991 .

[63]  C. Burrows,et al.  Template)2 synthesis of a dinucleating macrocyclic ligand and crystal structure of its dicopper(II) imidazolate complex , 1989 .

[64]  R. Thummel,et al.  Polyaza cavity shaped molecules. 4. Annelated derivatives of 2,2':6',2"-terpyridine , 1985 .

[65]  O. T. Beachley,et al.  Attempted syntheses of low-oxidation-state organometallic derivatives of aluminum, gallium, and indium. A new synthesis of tris(trimethylsilylmethyl)aluminum (Al(CH2SiMe3)3) , 1982 .

[66]  Dale W. Margerum,et al.  Macrocyclic effect on the stability of copper(II) tetramine complexes , 1969 .

[67]  D. Busch,et al.  Reactions of Coordinated Ligands. VI. Metal Ion Control in the Synthesis of Planar Nickel(II) Complexes of α-Diketo-bis-mercaptoimines , 1964 .