Research Based on Stock Predicting Model of Neural Networks Ensemble Learning

[1]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  Algorithmic Trading Risk , 2014 .

[4]  Snehanshu Saha,et al.  Predicting the direction of stock market prices using random forest , 2016, ArXiv.

[5]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[6]  A. Lo,et al.  A Non-Random Walk Down Wall Street , 1999 .

[7]  Adriano C. M. Pereira,et al.  Stock market's price movement prediction with LSTM neural networks , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[8]  Franklin Allen,et al.  Using genetic algorithms to find technical trading rules , 1999 .

[9]  Yue Zhang,et al.  Deep Learning for Event-Driven Stock Prediction , 2015, IJCAI.

[10]  Kai Chen,et al.  A LSTM-based method for stock returns prediction: A case study of China stock market , 2015, 2015 IEEE International Conference on Big Data (Big Data).

[11]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[12]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[13]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[14]  H. White,et al.  Economic prediction using neural networks: the case of IBM daily stock returns , 1988, IEEE 1988 International Conference on Neural Networks.

[15]  Berkman Sahiner,et al.  Dual system approach to computer-aided detection of breast masses on mammograms. , 2006, Medical physics.

[16]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  M. Osborne Brownian Motion in the Stock Market , 1959 .