Metrics of quantum states

In this work we study metrics of quantum states, which are natural generalizations of the usual trace metric and Bures metric. Some useful properties of the metrics are proved, such as the joint convexity and contractivity under quantum operations. Our result has a potential application in studying the geometry of quantum states as well as the entanglement detection.

[1]  Deping Ye,et al.  On the Bures Volume of Separable Quantum States , 2009, ArXiv.

[2]  Jaroslaw Adam Miszczak,et al.  Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..

[3]  Paolo Zanardi,et al.  Operator fidelity susceptibility, decoherence, and quantum criticality , 2008, 0807.1370.

[4]  W. Greub Linear Algebra , 1981 .

[5]  H. Sommers,et al.  Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.

[6]  Volume of the quantum mechanical state space , 2006, math-ph/0604032.

[7]  Xiaoguang Wang,et al.  Operator fidelity susceptibility: An indicator of quantum criticality , 2008, 0803.2940.

[8]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[9]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[10]  Deping Ye,et al.  On the comparison of volumes of quantum states , 2010, ArXiv.

[11]  H. Sommers,et al.  Bures volume of the set of mixed quantum states , 2003, quant-ph/0304041.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  A. Wang,et al.  Revised Geometric Measure of Entanglement , 2007, quant-ph/0701099.

[14]  Bures fidelity of displaced squeezed thermal states , 1998, quant-ph/9907088.

[15]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[16]  Xian-Geng Zhao,et al.  Alternative fidelity measure between two states of an N-state quantum system , 2002 .

[17]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[18]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[19]  Nicolas Hadjisavvas Metrics on the set of states of a W∗-algebra , 1986 .

[20]  Hai-Qing Lin,et al.  Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model , 2008, 0803.1292.

[21]  Paolo Zanardi,et al.  Mixed-state fidelity and quantum criticality at finite temperature , 2006, quant-ph/0612008.

[22]  O. Gühne,et al.  Geometric measure of entanglement for symmetric states , 2009, 0905.4822.

[23]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[24]  G. Raggio Generalized transition probabilities and applications , 1984 .

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  T. Andô,et al.  Comparison of norms |||f (A)−f (B)||| and |||f (|A−B|)||| , 1988 .

[27]  B. M. Fulk MATH , 1992 .

[28]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[29]  Karol Życzkowski,et al.  Random quantum operations , 2008, 0804.2361.

[30]  Xian-Geng Zhao,et al.  Geometric observation for Bures fidelity between two states of a qubit , 2002 .

[31]  William J. Munro,et al.  Connections between relative entropy of entanglement and geometric measure of entanglement , 2004, Quantum Inf. Comput..

[32]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[33]  Paulo E. M. F. Mendonca,et al.  Alternative fidelity measure between quantum states , 2008, 0806.1150.