Improved Soliton Amplitude Estimation via the Continuous Spectrum

In soliton communication systems, the continuous nonlinear spectrum, ideally zero, is conventionally ignored at the receiver. In this paper, we exploit correlation between the received continuous spectrum and perturbations of the discrete soliton eigenvalue. We propose four estimation schemes, classified into two categories, one based on the nonlinear Fourier transform (NFT) and the other based on minimum Euclidean distance. Both categories comprise two schemes, one that exploits the received continuous spectral function to achieve improved estimation and one that does not. Numerical simulations demonstrate that significant reduction in estimation error can be achieved when the continuous spectrum is exploited, translating into improved information transmission rates of up to ${\text{46}}\%$ compared to the reference NFT-based scheme.

[1]  Mansoor I. Yousefi,et al.  Linear and Nonlinear Frequency-Division Multiplexing , 2016, IEEE Transactions on Information Theory.

[2]  Alan Pak Tao Lau,et al.  Nonlinear frequency division multiplexing with b-modulation: shifting the energy barrier. , 2018, Optics express.

[3]  Alex Alvarado,et al.  Capacity Estimates of Single Soliton Communication , 2018, 2018 European Conference on Optical Communication (ECOC).

[4]  Peter J Winzer,et al.  Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. , 2018, Optics express.

[5]  Polina Bayvel,et al.  Dual-Polarization Non-Linear Frequency-Division Multiplexed Transmission With $b$-Modulation , 2018, Journal of Lightwave Technology.

[6]  Sander Wahls,et al.  FNFT: A Software Library for Computing Nonlinear Fourier Transforms , 2018, J. Open Source Softw..

[7]  V. Aref,et al.  Modulation Over Nonlinear Fourier Spectrum: Continuous and Discrete Spectrum , 2018, Journal of Lightwave Technology.

[8]  Son T. Le,et al.  100 Gbps b-modulated Nonlinear Frequency Division Multiplexed Transmission , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[9]  Javier García Communication Using Eigenvalues of Higher Multiplicity of the Nonlinear Fourier Transform , 2018, ArXiv.

[10]  V. Aref,et al.  High Speed Precompensated Nonlinear Frequency-Division Multiplexed Transmissions , 2017, Journal of Lightwave Technology.

[11]  Sergei K. Turitsyn,et al.  Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives , 2017, 2018 European Conference on Optical Communication (ECOC).

[12]  Polina Bayvel,et al.  Capacity Lower Bounds of the Noncentral Chi-Channel With Applications to Soliton Amplitude Modulation , 2016, IEEE Transactions on Communications.

[13]  Sander Wahls,et al.  Generation of Time-Limited Signals in the Nonlinear Fourier Domain via b-Modulation , 2017, 2017 European Conference on Optical Communication (ECOC).

[14]  Vahid Aref,et al.  Does the Cross-Talk Between Nonlinear Modes Limit the Performance of NFDM Systems? , 2017, 2017 European Conference on Optical Communication (ECOC).

[15]  V. Aref,et al.  125 Gbps Pre-Compensated Nonlinear Frequency-Division Multiplexed Transmission , 2017, 2017 European Conference on Optical Communication (ECOC).

[16]  P. Wai,et al.  High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. , 2017, Optics express.

[17]  Majid Safari,et al.  Capacity Analysis of Signaling on the Continuous Spectrum of Nonlinear Optical Fibers , 2017, Journal of Lightwave Technology.

[18]  Stephan ten Brink,et al.  On time-bandwidth product of multi-soliton pulses , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[19]  P. Wai,et al.  Alternative Decoding Methods for Optical Communications Based on Nonlinear Fourier Transform , 2017, Journal of Lightwave Technology.

[20]  Vahid Aref,et al.  Demonstration of 64×0.5Gbaud nonlinear frequency division multiplexed transmission with 32QAM , 2017, OFC.

[21]  Polina Bayvel,et al.  Nonlinear frequency-division multiplexing in the focusing regime , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[22]  Jaroslaw E Prilepsky,et al.  Capacity estimates for optical transmission based on the nonlinear Fourier transform , 2016, Nature Communications.

[23]  F. Kschischang,et al.  Bi-Directional Algorithm for Computing Discrete Spectral Amplitudes in the NFT , 2016, Journal of Lightwave Technology.

[24]  Qun Zhang,et al.  Achievable rates of soliton communication systems , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[25]  Mansoor I. Yousefi,et al.  Multieigenvalue Communication , 2016, Journal of Lightwave Technology.

[26]  A. Ellis,et al.  Demonstration of Nonlinear Inverse Synthesis Transmission Over Transoceanic Distances , 2016, Journal of Lightwave Technology.

[27]  Wilfried Idler,et al.  Experimental nonlinear frequency domain equalization of QPSK modulated 2-eigenvalue soliton , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[28]  Wilfried Idler,et al.  Experimental demonstration of nonlinear frequency division multiplexed transmission , 2015, 2015 European Conference on Optical Communication (ECOC).

[29]  Mansoor I. Yousefi,et al.  Nonlinear Frequency Division Multiplexed Transmissions Based on NFT , 2015, IEEE Photonics Technology Letters.

[30]  Qun Zhang,et al.  A spectral domain noise model for optical fibre channels , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[31]  Qun Zhang,et al.  A Gaussian noise model of spectral amplitudes in soliton communication systems , 2015, 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[32]  H. Bulow Experimental Demonstration of Optical Signal Detection Using Nonlinear Fourier Transform , 2015, Journal of Lightwave Technology.

[33]  H. Vincent Poor,et al.  Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[34]  H. Vincent Poor,et al.  Fast Numerical Nonlinear Fourier Transforms , 2014, IEEE Transactions on Information Theory.

[35]  Henning Bulow,et al.  Experimental assessment of nonlinear fourier transformation based detection under fiber nonlinearity , 2014, 2014 The European Conference on Optical Communication (ECOC).

[36]  Jaroslaw E Prilepsky,et al.  Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels. , 2014, Physical review letters.

[37]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation , 2013, IEEE Transactions on Information Theory.

[38]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods , 2012, IEEE Transactions on Information Theory.

[39]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.

[40]  Zhi Tian,et al.  Detection, estimation, and filtering theory , 2013 .

[41]  Meir Feder,et al.  On the Achievable Communication Rates of Generalized Soliton Transmission Systems , 2012, ArXiv.

[42]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[43]  Gerhard Kramer,et al.  Capacity limits of information transport in fiber-optic networks. , 2008, Physical review letters.

[44]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .

[45]  J. Bromage,et al.  Raman amplification for fiber communications systems , 2003, Journal of Lightwave Technology.

[46]  A. Hasegawa,et al.  Soliton-based optical communications: an overview , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Francesco Matera,et al.  Nonlinear Optical Communication Networks , 1998 .

[48]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[49]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[50]  H. A. Haus,et al.  Optical fiber solitons, their properties and uses , 1993, Proc. IEEE.

[51]  A. Hasegawa,et al.  Eigenvalue communication , 1993 .

[52]  A. Hasegawa,et al.  Effects of initial overlap on the propagation of optical solitons at different wavelengths. , 1991, Optics letters.

[53]  J. Gordon,et al.  Phase noise in photonic communications systems using linear amplifiers. , 1990, Optics letters.

[54]  J. Gordon,et al.  Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers , 1990 .

[55]  Hermann A. Haus,et al.  Quantum theory of soliton squeezing: a linearized approach , 1990 .

[56]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[57]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[58]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[59]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[60]  Pak Lim Chu,et al.  Mutual interaction between solitons of unequal amplitudes in optical fibre , 1985 .

[61]  David Yevick,et al.  Numerical investigation of soliton interaction , 1983 .

[62]  Nick Doran,et al.  Bandwidth limits of nonlinear (soliton) optical communication systems , 1983 .

[63]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[64]  William K. Bischel,et al.  Numerical studies of the interplay between self‐phase modulation and dispersion for intense plane‐wave laser pulses , 1975 .

[65]  Robert A. Fisher,et al.  The role of linear dispersion in plane‐wave self‐phase modulation , 1973 .

[66]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[67]  R. H. Hardin Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations , 1973 .

[68]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[69]  J. Gordon,et al.  Quantum Statistics of Masers and Attenuators , 1963 .

[70]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[71]  H. Hotelling Relations Between Two Sets of Variates , 1936 .