The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements.
暂无分享,去创建一个
[1] J. Blower,et al. A Jumping Millipede , 1973, Nature.
[2] Skals,et al. Sound production by abdominal tymbal organs in two moth species: the green silver-line and the scarce silver-line (Noctuoidea: Nolidae: Chloephorinae). , 1999, The Journal of experimental biology.
[3] Stanislav N Gorb. Design of insect unguitractor apparatus , 1996, Journal of morphology.
[4] R. Josephson,et al. A Synchronous Insect Muscle with an Operating Frequency Greater than 500 Hz , 1985 .
[5] H. Bennet-Clark,et al. The energetics of the jump of the locust Schistocerca gregaria. , 1975, The Journal of experimental biology.
[6] W. J. Heitler. The locust jump , 1974, Journal of comparative physiology.
[8] J. Mallet. Handbuch der Zoologie , 2006, Anzeiger für Schädlingskunde.
[9] Occurrence of Resilin in Elastic Structures in the Food-pump of Reduviid Bugs , 1983 .
[10] Stanislav N. Gorb,et al. Evolution of the dragonfly head-arresting system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[11] Stanislav N. Gorb,et al. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera : Tenebrionidae) : design of co-opted fields of microtrichia and cuticle ultrastructure , 1998 .
[12] Bennet-Clark. Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae , 1997, The Journal of experimental biology.
[13] R. M. Alexander,et al. Leg design and jumping technique for humans, other vertebrates and insects. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[14] H. R. Hepburn,et al. The insect integument. , 1976 .
[15] P. Shewry,et al. Elastomeric proteins: biological roles, structures and mechanisms. , 2000, Trends in biochemical sciences.
[16] R. Wootton,et al. Elastic joints in dermapteran hind wings: materials and wing folding. , 2000, Arthropod structure & development.
[17] Stanislav N Gorb. Design of the predatory legs of water bugs (Hemiptera: Nepidae, Naucoridae, Notonectidae, Gerridae) , 1995, Journal of morphology.
[18] M. Maxwell. Two rapid and simple methods used for the removal of resins from 1.0 μm thick epoxy sections , 1978, Journal of microscopy.
[19] W. Gronenberg. Fast actions in small animals: springs and click mechanisms , 1996, Journal of Comparative Physiology A.
[20] S. Gorb. Porous channels in the cuticle of the head‐arrester system in dragon/damselflies (Insecta: Odonata) , 1997, Microscopy research and technique.
[21] Resilin in the cuticle of physogastric queen termites , 1980, Experientia.
[22] H. Weber. Kopf und thorax von psylla mali schmidb. (Hemiptera-Homoptera) , 2004, Zeitschrift für Morphologie und Ökologie der Tiere.
[23] G. Krisper. Das Sprungvermögen der Milbengattung Zetorchestes (Acarida, Oribatida) , 1990 .
[24] David G. Furth,et al. What makes Blepharida jump? A structural study of the metafemoral spring of a flea beetle , 1983 .
[25] T. Weis-Fogh. A Rubber-Like Protein in Insect Cuticle , 1960 .
[26] H. Bennet-Clark,et al. The jump of the flea: a study of the energetics and a model of the mechanism. , 1967, The Journal of experimental biology.
[27] J. Murray,et al. Scale Effects in Animal Locomotion. , 1978 .
[28] Insect rope‐walkers: kinematics of walking on thin rods in a bug, Graphosoma italicum (Heteroptera, Pentatomidae) , 1996 .
[29] R. Alexander,et al. Storage of elastic strain energy in muscle and other tissues , 1977, Nature.
[30] J. Gosline,et al. Elastic proteins: biological roles and mechanical properties. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[31] Roy E. Ritzmann,et al. Mechanisms for the snapping behavior of two alpheid shrimp,Alpheus californiensis andAlpheus heterochelis , 1974, Journal of comparative physiology.
[32] R Blickhan,et al. The function of resilin in beetle wings , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[33] R. M. Alexander,et al. Elastic mechanisms in animal movement , 1988 .
[34] S. Gorb. Serial Elastic Elements in the Damselfly Wing: Mobile Vein Joints Contain Resilin , 1999, Naturwissenschaften.
[35] E. Christian,et al. The jump of the springtails , 1978, Naturwissenschaften.
[36] Stanislav Gorb,et al. Functional morphology of the head-arrester system in Odonata , 1998 .
[37] Terry L. Erwin,et al. Carabid Beetles, Their Evolution, Natural History, and Classification , 1980 .
[38] R. Foelix,et al. The biology of spiders. , 1987 .
[39] A. Spurr. A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.
[40] H. Weber. Lebensweise und umweltbeziehungen von trialeurodes vaporariorum (Westwood) (homoptera-aleurodina) , 1931, Zeitschrift für Morphologie und Ökologie der Tiere.
[41] H. Weber. Biologie der Hemipteren : eine Naturgeschichte der Schbabelkerfe , 1930 .
[42] S. Zill,et al. Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence. , 2000, Arthropod structure & development.
[43] S. Gorb. Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.
[44] W. Gronenberg. The fast mandible strike in the trap-jaw ant Odontomachus , 1995, Journal of Comparative Physiology A.
[45] S. Gorb,et al. Wing‐locking mechanisms in aquatic Heteroptera , 2003, Journal of morphology.
[46] S. O. Andersen,et al. Resilin. A Rubberlike Protein in Arthropod Cuticle , 1964 .