Dirichlet problems involving the Hardy-Leray operators with multiple polars

Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\mathcal{ {\mathcal L} }}}_{V}:= -\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\left(x)={\sum }_{i=1}^{m}\frac{{\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\mu }_{i}\ge -\frac{{\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\mathcal{A}}}_{m}=\left\{{A}_{i}:i=1,\ldots ,m\right\} in R N {{\mathbb{R}}}^{N} ( N ≥ 2 N\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\left\{{\mu }_{i}\right\}}_{i=1}^{m} and the locations of polars { A i } \left\{{A}_{i}\right\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \Omega be a bounded domain containing A m {{\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\mathcal{ {\mathcal L} }}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1.0em}{\rm{on}}\hspace{0.33em}\partial \Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \left(E)\hspace{1.0em}\hspace{1.0em}{{\mathcal{ {\mathcal L} }}}_{V}u=\nu \hspace{1em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1em}{\rm{on}}\hspace{0.33em}\partial \Omega , when ν \nu belongs to L p ( Ω ) {L}^{p}\left(\Omega ) , with p > 2 N N + 2 p\gt \frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\infty } estimate when p > N 2 p\gt \frac{N}{2} . When the principle eigenvalue is positive and ν \nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \ A m ) \nu \in {{\mathcal{C}}}^{\gamma }\left(\bar{\Omega }\setminus {{\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \left(E) .

[1]  K. Gkikas,et al.  Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations , 2021, Calculus of Variations and Partial Differential Equations.

[2]  Tobias Weth,et al.  The Poisson problem for the fractional Hardy operator: Distributional identities and singular solutions , 2020, Transactions of the American Mathematical Society.

[3]  L. Véron,et al.  Schrödinger operators with Leray-Hardy potential singular on the boundary , 2019, Journal of Differential Equations.

[4]  V. Felli,et al.  On fractional multi-singular Schrödinger operators: Positivity and localization of binding , 2019, Journal of Functional Analysis.

[5]  K. Gkikas,et al.  Semilinear elliptic equations with Hardy potential and gradient nonlinearity , 2019, Revista Matemática Iberoamericana.

[6]  L. Véron,et al.  Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data , 2019, Mathematics in Engineering.

[7]  E. Berchio,et al.  Improved multipolar Poincaré–Hardy inequalities on Cartan–Hadamard manifolds , 2018, Annali di Matematica Pura ed Applicata (1923 -).

[8]  F. Zhou,et al.  Isolated singularities for elliptic equations with Hardy operator and source nonlinearity , 2017, 1706.01793.

[9]  A. Quaas,et al.  On nonhomogeneous elliptic equations with the Hardy—Leray potentials , 2017, Journal d'Analyse Mathématique.

[10]  P. Markowich,et al.  Fundamental solutions for Schrödinger operators with general inverse square potentials , 2017, 1703.04053.

[11]  Fu Ken Ly,et al.  Weighted estimates for powers and Smoothing estimates of Schr\"odinger operators with inverse-square potentials , 2016, 1609.01938.

[12]  L. Véron Existence and Stability of Solutions of General Semilinear Elliptic Equations with Measure Data , 2012, 1207.4398.

[13]  Enrique Zuazua,et al.  Hardy Inequalities, Observability, and Control for the Wave and Schrödinger Equations with Singular Potentials , 2009, SIAM J. Math. Anal..

[14]  D. Kang On the weighted elliptic problems involving multi-singular potentials and multi-critical exponents , 2009 .

[15]  S. Ervedoza Control and Stabilization Properties for a Singular Heat Equation with an Inverse-Square Potential , 2008 .

[16]  E. Zuazua,et al.  Null controllability for the heat equation with singular inverse-square potentials , 2008 .

[17]  V. Felli On the existence of ground state solutions to nonlinear Schrödinger equations with multisingular inverse-square anisotropic potentials , 2008, 0802.0578.

[18]  Yihong Du,et al.  Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity , 2007 .

[19]  L. Boccardo,et al.  A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential , 2006 .

[20]  Susanna Terracini,et al.  Elliptic Equations with Multi-Singular Inverse-Square Potentials and Critical Nonlinearity , 2006 .

[21]  S. Terracini,et al.  On Schrödinger operators with multipolar inverse-square potentials , 2006, math/0602209.

[22]  S. Terracini,et al.  Nonlinear Schrödinger equations with symmetric multi-polar potentials , 2005, math/0506504.

[23]  Pierre-Louis Lions,et al.  On the thermodynamic limit for Hartree–Fock type models , 2001 .

[24]  J. Vázquez,et al.  The Hardy Inequality and the Asymptotic Behaviour of the Heat Equation with an Inverse-Square Potential , 2000 .

[25]  Henri Berestycki,et al.  Existence and Bifurcation of Solutions for an Elliptic Degenerate Problem , 1997 .

[26]  L. Ferreira,et al.  Existence and Symmetries for Elliptic Equations with Multipolar Potentials and Polyharmonic Operators , 2013 .