Multiagent Framework for Bio-data Mining

This paper proposes to apply multiagent based data mining technologies to biological data analysis. The rationale is justified from multiple perspectives with an emphasis on biological context. Followed by that, an initial multiagent based bio-data mining framework is presented. Based on the framework, we developed a prototype system to demonstrate how it helps the biologists to perform a comprehensive mining task for answering biological questions. The system offers a new way to reuse biological datasets and available data mining algorithms with ease.

[1]  E. Petricoin,et al.  Serum proteomic patterns for detection of prostate cancer. , 2002, Journal of the National Cancer Institute.

[2]  H WittenIan,et al.  Data mining in bioinformatics using Weka , 2004 .

[3]  Peter J. Fleming,et al.  Performance optimization of gas turbine engine , 2005, Eng. Appl. Artif. Intell..

[4]  Patrick Tan,et al.  Genetic algorithms applied to multi-class prediction for the analysis of gene expression data , 2003, Bioinform..

[5]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[6]  Fillia Makedon,et al.  HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data , 2005, Bioinform..

[7]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[8]  Chris H. Q. Ding,et al.  Multi-class protein fold recognition using support vector machines and neural networks , 2001, Bioinform..

[9]  Chengqi Zhang,et al.  Agent-Mining Interaction: An Emerging Area , 2007, AIS-ADM.

[10]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[11]  Edward Keedwell,et al.  Discovering Gene Networks with a Neural-Genetic Hybrid , 2005, TCBB.

[12]  Richard A. Baldock,et al.  Bioinformatics integration and agent technology , 2004, J. Biomed. Informatics.

[13]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[14]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[15]  Matthias Klusch,et al.  Distributed data mining and agents , 2005, Eng. Appl. Artif. Intell..

[16]  Zili Zhang,et al.  A Clustering Based Hybrid System for Mass Spectrometry Data Analysis , 2008, PRIB.

[17]  Hannu Toivonen,et al.  Data Mining In Bioinformatics , 2005 .

[18]  S. Altschul,et al.  SAGEmap: a public gene expression resource. , 2000, Genome research.

[19]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[20]  BellifemineFabio,et al.  Developing multi-agent systems with a FIPA-compliant agent framework , 2001 .

[21]  Zili Zhang,et al.  Building agent-based hybrid intelligent systems: A case study , 2007, Web Intell. Agent Syst..

[22]  Zili Zhang,et al.  An Agent-Based Hybrid System for Microarray Data Analysis , 2009, IEEE Intelligent Systems.

[23]  Agostino Poggi,et al.  Developing multi‐agent systems with a FIPA‐compliant agent framework , 2001 .

[24]  Alon Y. Halevy,et al.  Data integration and genomic medicine , 2007, J. Biomed. Informatics.

[25]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.