From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems

Discrete event systems provide a useful abstraction for modelling a wide variety of systems: digital circuits, communication networks, manufacturing plants, etc. Their dynamics--stability, equilibrium states, cyclical behaviour, asymptotic average delays--are of vital importance to system designers. However, in marked contrast to continuous dynamical systems, there has been little systematic mathematical theory that designers can draw upon. In this paper, we survey the development of such a theory, based on the dynamics of maps which are nonexpansive in the l∞ norm. This has its origins in linear algebra over the max-plus semiring but extends to a nonlinear theory that encompasses a variety of problems arising in other mathematical disciplines. We concentrate on the mathematical aspects and set out several open problems.

[1]  Edwin Burmeister,et al.  Mathematical Theories of Economic Growth , 1971 .

[2]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[3]  Jeremy Gunawardena Timing Analysis of Digital Circuits and the Theory of Min-Max Functions , 2001 .

[4]  Victor Pavlovich Maslov,et al.  Advances in Soviet mathematics , 1990 .

[5]  David A. Starrett,et al.  Mathematical Theories of Economic Growth , 1971 .

[6]  Jeremy Gunawardena,et al.  Min-max functions , 1994, Discret. Event Dyn. Syst..

[7]  C. V. Ramamoorthy,et al.  Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets , 1980, IEEE Transactions on Software Engineering.

[8]  Raymond Reiter,et al.  Scheduling Parallel Computations , 1968, J. ACM.

[9]  Eleni Katirtzoglou The cycle time vector of D–A–D functions , 1999 .

[10]  J. Quadrat,et al.  A linear-system-theoretic view of discrete-event processes , 1983, The 22nd IEEE Conference on Decision and Control.

[11]  Elon Kohlberg,et al.  On Stochastic Games with Stationary Optimal Strategies , 1978, Math. Oper. Res..

[12]  Ganesh Gopalakrishnan,et al.  Performance analysis and optimization of asynchronous circuits , 1994, Proceedings 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[13]  R. Nussbaum Iterated nonlinear maps and Hilbert’s projective metric. II , 1989 .

[14]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[15]  Jeremy Gunawardena,et al.  Idempotency: An introduction to idempotency , 1998 .

[16]  S. Gaubert,et al.  The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.

[17]  Kunle Olukotun,et al.  Analysis and design of latch-controlled synchronous digital circuits , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Jeremy Gunawardena,et al.  A NON-LINEAR HIERARCHY FOR DISCRETE EVENT DYNAMICAL SYSTEMS , 1998 .

[19]  S. Gaubert Theorie des systemes lineaires dans les dioides , 1992 .

[20]  Gian Luigi Ferrari,et al.  Dynamic Matrices and the Cost Analysis of Concurrent Programs , 1995, AMAST.

[21]  Aart Blokhuis,et al.  Alternative proof of sine's theorem on the size of a regular polygon in Rn with the ℓ∞-metric , 1992, Discret. Comput. Geom..

[22]  B. Carré An Algebra for Network Routing Problems , 1971 .

[23]  S. Gaubert,et al.  THE DUALITY THEOREM FOR MIN-MAX FUNCTIONS , 1997 .

[24]  W. Zijm Asymptotic expansions for dynamic programming recursions with general nonnegative matrices , 1987 .

[25]  D. Vere-Jones,et al.  NON-NEGATIVE MATRICES (Wiley Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[26]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[27]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[28]  N. Lloyd TOPICS IN METRIC FIXED POINT THEORY (Cambridge Studies in Advanced Mathematics 28) , 1992 .

[29]  H. Swinnerton-Dyer Publications of the Newton Institute , 1993 .

[30]  Jean Cochet-Terrasson A constructive xed point theorem for min-max functions , 1999 .

[31]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[32]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[33]  R. Nussbaum Idempotency: Periodic points of nonexpansive maps , 1998 .

[34]  J. Gunawardena Cycle times and fixed points of min-max functions , 1994 .

[35]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[36]  齐向东,et al.  THE EIGEN-PROBLEM AND PERIOD ANALYSIS OF THE DISCRETE-EVENT SYSTEM , 1990 .

[37]  V. Kolokoltsov On linear, additive, and homogeneous operators in idempotent analysis , 1992 .

[38]  Gaetano Borriello,et al.  An algorithm for exact bounds on the time separation of events in concurrent systems , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.

[39]  Shimon Even,et al.  Unison, canon, and sluggish clocks in networks controlled by a synchronizer , 1995, Mathematical systems theory.

[40]  Jean-Marc Vincent,et al.  Some Ergodic Results on Stochastic Iterative Discrete Events Systems , 1997, Discret. Event Dyn. Syst..

[41]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[42]  Peter Whittle,et al.  Growth Optimality for Branching Markov Decision Chains , 1982, Math. Oper. Res..

[43]  R. Sine,et al.  A nonlinear Perron-Frobenius theorem , 1990 .

[44]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[45]  RobertF Brown,et al.  A topological introduction to nonlinear analysis , 1993 .

[46]  Elon Kohlberg,et al.  The Asymptotic Theory of Stochastic Games , 1976, Math. Oper. Res..

[47]  Hans Schneider,et al.  The spectrum of a nonlinear operator associated with a matrix , 1969 .

[48]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[49]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[50]  F. Baccelli,et al.  Ergodic Theorems for Stochastic Operators and Discrete Event Networks , 1995 .

[51]  Moshe Sidi,et al.  On the Performance of Synchronized Programs in Distributed Networks with Random Processing Times and Transmission Delays , 1994, IEEE Trans. Parallel Distributed Syst..

[52]  Roger D. Nussbaum,et al.  Omega limit sets of nonexpansive maps: finiteness and cardinality estimates , 1990, Differential and Integral Equations.

[53]  C. Sabot Existence and uniqueness of diffusions on finitely ramified self-similar fractals , 1997 .

[54]  Elon Kohlberg,et al.  Invariant Half-Lines of Nonexpansive Piecewise-Linear Transformations , 1980, Math. Oper. Res..

[55]  Geert Jan Olsder,et al.  Eigenvalues of dynamic max-min systems , 1991, Discret. Event Dyn. Syst..

[56]  Narendra V. Shenoy,et al.  Verifying clock schedules , 1992, ICCAD.

[57]  Paul Hudson Games Theory — Lectures for Economists and Systems Scientists , 1977 .

[58]  Hewlett-Packard LabsFilton Road,et al.  On the existence of cycle times for some non-expansive maps , 1995 .

[59]  Jean-Pierre Quadrat,et al.  Max-Plus Algebra and Applications to System Theory and Optimal Control , 1995 .

[60]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[61]  Elon Kohlberg,et al.  Asymptotic behavior of nonexpansive mappings in normed linear spaces , 1981 .

[62]  H. Toutenburg Vorob'ev, N. N., Game Theory, Lectures for Economists and Systems Scientists. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1977. XI, 178 S., 60 Abb., DM 38,20. US $ 16.80. (Applications of Mathematics 7) , 1979 .

[63]  M. Lewin On nonnegative matrices , 1971 .