Taming the Mott Transition for a Novel Mott Transistor

[1]  A. Wilson,et al.  The Theory of Electronic Semi-Conductors , 1931 .

[2]  D. P. Oxley,et al.  ELECTROFORMING, SWITCHING AND MEMORY EFFECTS IN OXIDE THIN FILMS , 1977 .

[3]  J. Mannhart,et al.  Transport properties of LaTiO3+x films and heterostructures , 2003 .

[4]  Mott transition, compressibility divergence, and the P-T phase diagram of layered organic superconductors: an ultrasonic investigation. , 2002, Physical review letters.

[5]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[6]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[7]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical Review Letters.

[8]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[9]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[10]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[11]  J. A. Misewich,et al.  A field effect transistor based on the Mott transition in a molecular layer , 1996 .

[12]  Daniel Braithwaite,et al.  Electric‐Pulse‐driven Electronic Phase Separation, Insulator–Metal Transition, and Possible Superconductivity in a Mott Insulator , 2008, Advanced materials.

[13]  N. Wu,et al.  Direct resistance profile for an electrical pulse induced resistance change device , 2005 .

[14]  Y. Tokura,et al.  Strong electron correlation effects in non-volatile electronic memory devices , 2005, Symposium Non-Volatile Memory Technology 2005..

[15]  Seungwu Han,et al.  First-principles modeling of resistance switching in perovskite oxide material , 2006 .

[16]  Naoto Nagaosa,et al.  Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. , 2005, Physical review letters.

[17]  P. Avouris,et al.  Current-induced nanochemistry: Local oxidation of thin metal films , 1999 .

[18]  E. Pippel,et al.  Evidence of oxygen segregation at Ag/MgO interfaces , 2000 .

[19]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[20]  Phaedon Avouris,et al.  Current-induced local oxidation of metal films: Mechanism and quantum-size effects , 1998 .

[21]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[22]  G. Kotliar,et al.  Compressibility divergence and the finite temperature Mott transition. , 2002, Physical review letters.

[23]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[24]  H. R. Krishnamurthy,et al.  Sound velocity anomaly at the mott transition: application to organic conductors and V2O3. , 2004, Physical review letters.

[25]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[26]  Masashi Kawasaki,et al.  Resistance switching memory device with a nanoscale confined current path , 2007 .

[27]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[28]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[29]  H. Akinaga,et al.  Resistance switching in the metal deficient-type oxides: NiO and CoO , 2007 .

[30]  N. Awaya,et al.  Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM) , 2002, Digest. International Electron Devices Meeting,.

[31]  F. Modine,et al.  Electrolytic Coloration and Electrical Breakdown of MgO Single Crystals , 1984 .

[32]  D. Johrendt,et al.  Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb(4)S(8), GaNb(4)Se(8), and GaTa(4)Se(8). , 2005, Journal of the American Chemical Society.

[33]  M. Rozenberg,et al.  A mechanism for unipolar resistance switching in oxide nonvolatile memory devices , 2007, 0707.3077.

[34]  A. Pal,et al.  Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap? , 2008, Small.

[35]  M Quintero,et al.  Mechanism of electric-pulse-induced resistance switching in manganites. , 2007, Physical review letters.

[36]  D. Khomskii,et al.  Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure. , 2004, Physical review letters.

[37]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[38]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[39]  Heng-Yuan Lee,et al.  Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide , 2007 .

[40]  A. Schrott,et al.  Mott transition field effect transistor , 1998 .

[41]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[42]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.