Two-Dimensional Displacement Analysis of Piezoelectric Transducer Array Elements

En partant du cas isotrope, on montre que la pression mode de vibration de l'element de ceramique piezoelectrique des reseaux de transducteurs peut etre etudie en etablissant les ondes de Lamb d'ordre nul symetriques stationnaires

[1]  B. Auld,et al.  A Variational Analysis of Edge Resonance in a Semi-Infinite Plate , 1977, IEEE Transactions on Sonics and Ultrasonics.

[2]  M. Pappalardo,et al.  Optimization of Dispersive Quarter Wave Slotted Matching Plates in Linear Transducer Arrays , 1984 .

[3]  R. Holland,et al.  Contour extensional resonant properties of rectangular piezoelectric plates , 1968 .

[4]  M. Redwood,et al.  Finite‐Difference Method for the Investigation of the Vibrations of Solids and the Evaluation of the Equivalent‐Circuit Characteristics of Piezoelectric Resonators. III , 1966 .

[5]  M. Pappalardo,et al.  A New Vibration Mode for Medical Imaging Arrays , 1984 .

[6]  P. Torvik Reflection of Wave Trains in Semi‐Infinite Plates , 1967 .

[7]  F. Besnier,et al.  Finite Element Analysis of Narrow Piezoelectric Parallelepiped Vibrations Energetical Coupling Modeling , 1983 .

[8]  R. D. Mindlin,et al.  Extensional Vibrations and Waves in a Circular Disk and a Semi-Infinite Plate , 1960 .

[9]  H. Tiersten,et al.  Resonant Frequencies of Finite Piezoelectric Ceramic Vibrators with High Electromechanical Coupling , 1963, IEEE Transactions on Ultrasonics Engineering.

[10]  Gordon S. Kino,et al.  Design of Slotted Transducer Arrays with Matched Backings , 1979 .

[11]  A. Fukumoto,et al.  Dependence of the electromechanical coupling coefficient on the width‐to‐thickness ratio of plank‐shaped piezoelectric transducers used for electronically scanned ultrasound diagnostic systems , 1979 .