An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae

Several ongoing or planned synoptic optical surveys are offering, or will soon be offering, an unprecedented opportunity for discovering larger samples of the rarest types of stripped-envelope core-collapse supernovae, such as those associated with relativistic jets, mildly relativistic ejecta, or strong interaction with the circumstellar medium. Observations at radio wavelengths are a useful tool to probe the fastest moving ejecta, as well as denser circumstellar environments, and can thus help us identify the rarest type of core-collapse explosions. Here, we discuss how to set up an efficient radio follow-up program to detect and correctly identify radio-emitting stripped-envelope core-collapse explosions. We use a method similar to the one described in Carbone & Corsi, and determine the optimal timing of GHz radio observations assuming a sensitivity comparable to that of the Karl G. Jansky Very Large Array. The optimization is done so as to ensure that the collected radio observations can identify the type of explosion powering the radio counterpart by using the smallest possible amount of telescope time. We also present a previously unpublished upper limit on the late-time radio emission from supernova iPTF 17cw. Finally, we conclude by discussing implications for follow-up in the X-rays.

[1]  M. Graham,et al.  Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.

[2]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[3]  C. Guidorzi,et al.  An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.

[4]  D. Frail,et al.  The Double-peaked Radio Light Curve of Supernova PTF11qcj , 2018, The Astrophysical Journal.

[5]  E. Murphy,et al.  Science with a next-generation Very Large Array , 2019 .

[6]  B. J. Shappee,et al.  The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.

[7]  A. Corsi,et al.  Optimized Radio Follow-up of Binary Neutron-star Mergers , 2018, The Astrophysical Journal.

[8]  P. Beniamini,et al.  Electrons' energy in GRB afterglows implied by radio peaks , 2017, 1706.07817.

[9]  D. Frail,et al.  iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger , 2017, 1706.00045.

[10]  O. Graur,et al.  Revisiting the Lick Observatory Supernova Search Volume-limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions , 2016, 1609.02922.

[11]  E. Bellm Volumetric Survey Speed: A Figure of Merit for Transient Surveys , 2016, 1605.02081.

[12]  D. Frail,et al.  RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS , 2015, 1512.01303.

[13]  J. Vink X-Ray Emission Properties of Supernova Remnants , 2016 .

[14]  E. Burns,et al.  ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS , 2015, 1512.04464.

[15]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[16]  E. Pian,et al.  An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars , 2014, 1406.1209.

[17]  A. J. van der Horst,et al.  Gamma-Ray Burst Jets and their Radio Observations , 2014, Publications of the Astronomical Society of Australia.

[18]  D. A. Kann,et al.  THE AFTERGLOW OF GRB 130427A FROM 1 TO 1016 GHz , 2013, 1307.4401.

[19]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.

[20]  J. Prieto,et al.  SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined Type Ic supernovae , 2012, 1208.3455.

[21]  A. J. van der Horst,et al.  GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.

[22]  Kingston,et al.  A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS , 2011, 1110.4124.

[23]  S. Campana,et al.  A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.

[24]  T. Piran,et al.  ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? , 2011, 1107.1346.

[25]  D. Frail,et al.  PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY , 2011, 1101.4208.

[26]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[27]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[28]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[29]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[30]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[31]  Norway.,et al.  Supernova 2006aj and the associated X-Ray Flash 060218 , 2006, astro-ph/0603495.

[32]  P. Brown,et al.  The shock break-out of GRB 060218/SN 2006aj , 2006, astro-ph/0603279.

[33]  L. Amati The Ep,i–Eiso correlation in gamma-ray bursts: updated observational status, re-analysis and main implications , 2006, astro-ph/0601553.

[34]  J. Fynbo,et al.  The galaxies in the field of the nearby GRB 980425/SN 1998bw , 2005, astro-ph/0510813.

[35]  Nikolay,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005, The Astrophysical Journal Supplement Series.

[36]  D. Frail,et al.  The Radio and X-Ray Luminous SN 2003bg and the Circumstellar Density Variations around Radio Supernovae , 2005, astro-ph/0512413.

[37]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[38]  E. Berger,et al.  Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts , 2005, astro-ph/0507147.

[39]  C. Firmani,et al.  Probing the existence of the Epeak–Eiso correlation in long gamma ray bursts , 2005, astro-ph/0502186.

[40]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[41]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[42]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[43]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[44]  E. Waxman The Nature of GRB 980425 and the Search for Off-Axis Gamma-Ray Burst Signatures in Nearby Type Ib/c Supernova Emission , 2003, astro-ph/0310320.

[45]  S. R. Kulkarni,et al.  A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae , 2003, astro-ph/0307228.

[46]  D. Yonetoku,et al.  An Off-Axis Jet Model For GRB 980425 and Low-Energy Gamma-Ray Bursts , 2003, astro-ph/0306615.

[47]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[48]  S. Djorgovski,et al.  Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir , 2001, astro-ph/0102282.

[49]  D. Ellison,et al.  Nonlinear Shock Acceleration and Photon Emission in Supernova Remnants , 2000, astro-ph/0003188.

[50]  D. Eichler,et al.  Shading and Smothering of Gamma-Ray Bursts , 1998, astro-ph/9812113.

[51]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[52]  R. Perna,et al.  Constraining the Beaming of Gamma-Ray Bursts with Radio Surveys , 1998, astro-ph/9810085.

[53]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[54]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[55]  J. Rhoads How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma-Ray Bursts , 1997, astro-ph/9705163.

[56]  J. Tonry,et al.  A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample , 1992 .

[57]  K. Kellermann The Spectra of Non-Thermal Radio Sources. , 1964 .