Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors

[1]  F. J. Livesey,et al.  Netrin and Netrin Receptor Expression in the Embryonic Mammalian Nervous System Suggests Roles in Retinal, Striatal, Nigral, and Cerebellar Development , 1997, Molecular and Cellular Neuroscience.

[2]  Stefan A. Przyborski,et al.  The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein , 1997, Nature.

[3]  R. Weinberg,et al.  Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene , 1997, Nature.

[4]  A. Varela-Echavarría,et al.  Motor Axon Subpopulations Respond Differentially to the Chemorepellents Netrin-1 and Semaphorin D , 1997, Neuron.

[5]  Hao Wang,et al.  Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System , 1996, Cell.

[6]  F. Murakami,et al.  Guidance of Circumferentially Growing Axons by Netrin-Dependent and -Independent Floor Plate Chemotropism in the Vertebrate Brain , 1996, Neuron.

[7]  J. Culotti,et al.  UNC-40, a C. elegans Homolog of DCC (Deleted in Colorectal Cancer), Is Required in Motile Cells Responding to UNC-6 Netrin Cues , 1996, Cell.

[8]  M. Masu,et al.  Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor , 1996, Cell.

[9]  Y. Jan,et al.  frazzled Encodes a Drosophila Member of the DCC Immunoglobulin Subfamily and Is Required for CNS and Motor Axon Guidance , 1996, Cell.

[10]  M. Sheng,et al.  PDZs and Receptor/Channel Clustering: Rounding Up the Latest Suspects , 1996, Neuron.

[11]  M. Seeger,et al.  Guidance Cues at the Drosophila CNS Midline: Identification and Characterization of Two Drosophila Netrin/UNC-6 Homologs , 1996, Neuron.

[12]  Jennifer L. Doyle,et al.  Genetic Analysis of Netrin Genes in Drosophila: Netrins Guide CNS Commissural Axons and Peripheral Motor Axons , 1996, Neuron.

[13]  E. Hedgecock,et al.  Neuroglia and Pioneer Neurons Express UNC-6 to Provide Global and Local Netrin Cues for Guiding Migrations in C. elegans , 1996, Neuron.

[14]  A. Pini,et al.  Chemorepulsion of developing motor axons by the floor plate , 1995, Neuron.

[15]  M. Tessier-Lavigne,et al.  The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons , 1995, Cell.

[16]  F. Murakami,et al.  Guidance of cerebellofugal axons in the rat embryo: Directed growth toward the floor plate and subsequent elongation along the longitudinal axis , 1995, Neuron.

[17]  C. Shatz,et al.  Sernaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord , 1995, Neuron.

[18]  Timothy E. Kennedy,et al.  Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord , 1994, Cell.

[19]  T. Jessell,et al.  The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6 , 1994, Cell.

[20]  D. Raible,et al.  Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones , 1993, Cell.

[21]  C. V. Van Itallie,et al.  The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Culotti,et al.  Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally , 1993, Nature.

[23]  M. Itoh,et al.  The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy , 1993, The Journal of cell biology.

[24]  J. Culotti,et al.  UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans , 1992, Neuron.

[25]  J. Culotti,et al.  UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans , 1992, Cell.

[26]  T. Jessell,et al.  F-spondin: A gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension , 1992, Cell.

[27]  H. Horvitz,et al.  Genes necessary for directed axonal elongation or fasciculation in C. elegans , 1992, Neuron.

[28]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[29]  G K Lewis,et al.  Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product , 1985, Molecular and cellular biology.

[30]  J. Altman,et al.  The development of the rat spinal cord. , 1984, Advances in anatomy, embryology, and cell biology.

[31]  P. Rakić,et al.  Neuron‐glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus , 1971, The Journal of comparative neurology.