Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family.

Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding. We performed a pair-wise amino acid sequence comparison, together with functional studies of rat Syt C2ABs, to examine common and divergent properties within the mammalian family. Sequence analysis indicates three different C2AB classes, the members of which share a high degree of sequence similarity. All the other C2ABs are highly divergent in sequence. Nearly half of the Syt family does not exhibit calcium/phospholipid binding in comparison to Syt I, the major brain isoform. Syts do, however, possess a more conserved function, namely calcium-independent binding to target SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) heterodimers. All tested isoforms, except Syt XII and Syt XIII, bound the target SNARE heterodimer comprising syntaxin 1 and SNAP-25 (25 kDa synaptosome-associated protein). Our present study suggests that many Syt isoforms can function in membrane trafficking to interact with the target SNARE heterodimer on the pathway to calcium-triggered membrane fusion.

[1]  S. Smaalen,et al.  Crystal Structure of 6,7-Dihydro-5a,7a,13,14-tetraaza-pentaphene-5,8-dione , 2019, X-ray Structure Analysis Online.

[2]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[3]  E. Chapman,et al.  Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells , 2003, The Journal of cell biology.

[4]  W. Sossin,et al.  Differential Regulation of Transmitter Release by Alternatively Spliced Forms of Synaptotagmin I , 2003, The Journal of Neuroscience.

[5]  M. Fukuda Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. , 2003, Biochemical and biophysical research communications.

[6]  M. Fukuda Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved from Drosophila to humans. , 2003, Journal of biochemistry.

[7]  B. Davletov,et al.  Mechanism of Calcium-independent Synaptotagmin Binding to Target SNAREs* , 2003, The Journal of Biological Chemistry.

[8]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[9]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[10]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[11]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[12]  Hitoshi Takahashi,et al.  Direct, Ca2+-dependent Interaction between Tubulin and Synaptotagmin I , 2002, The Journal of Biological Chemistry.

[13]  T. Südhof Synaptotagmins: Why So Many?* , 2002, The Journal of Biological Chemistry.

[14]  B. Davletov,et al.  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion , 2002, Nature.

[15]  G. Matthews,et al.  Calcium dependence of exocytosis in lacrimal gland acinar cells. , 2002, American journal of physiology. Cell physiology.

[16]  V. Subramaniam,et al.  SNARE assembly and disassembly exhibit a pronounced hysteresis , 2002, Nature Structural Biology.

[17]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[18]  M. Craxton Genomic analysis of synaptotagmin genes. , 2001, Genomics.

[19]  Steven S. Vogel,et al.  A Kinetic Analysis of Calcium-Triggered Exocytosis , 2001, The Journal of general physiology.

[20]  S. Sprang,et al.  C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. , 2001, Biochemistry.

[21]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[22]  K. Mikoshiba,et al.  Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII) , 2001 .

[23]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[24]  M. Zeidel,et al.  Reconstituting the Barrier Properties of a Water-tight Epithelial Membrane by Design of Leaflet-specific Liposomes* 210 , 2000, The Journal of Biological Chemistry.

[25]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[26]  E. Chapman,et al.  Membrane-embedded Synaptotagmin Penetrates cis ortrans Target Membranes and Clusters via a Novel Mechanism* , 2000, The Journal of Biological Chemistry.

[27]  M. Seagar,et al.  Synaptotagmins in membrane traffic: which vesicles do the tagmins tag? , 2000, Biochimie.

[28]  J. Garrido,et al.  Synaptotagmin I and IV define distinct populations of neuronal transport vesicles , 2000, The European journal of neuroscience.

[29]  T. Südhof,et al.  Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. , 2000, Biochemistry.

[30]  M. Goedert,et al.  Alternative splicing of synaptotagmins involving transmembrane exon skipping , 1999, FEBS letters.

[31]  A. Brunger,et al.  Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III , 1999, The Journal of cell biology.

[32]  E. Chapman,et al.  Delineation of the Oligomerization, AP-2 Binding, and Synprint Binding Region of the C2B Domain of Synaptotagmin* , 1998, The Journal of Biological Chemistry.

[33]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[34]  J. Sgouros,et al.  Synaptotagmins: more isoforms than functions? , 1998, Biochemical and biophysical research communications.

[35]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[36]  M. Bycroft,et al.  Crystal Structure of a Calcium-Phospholipid Binding Domain from Cytosolic Phospholipase A2* , 1998, The Journal of Biological Chemistry.

[37]  K. Mikoshiba,et al.  104 Functional diversity of C2 domains of synaptotagmin family , 1997, Neuroscience Research.

[38]  T. Südhof,et al.  The Evolutionary Pressure to Inactivate , 1997, The Journal of Biological Chemistry.

[39]  H. Horstmann,et al.  Local Ca2+ Release from Internal Stores Controls Exocytosis in Pituitary Gonadotrophs , 1997, Neuron.

[40]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[41]  Leon Lagnado,et al.  Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells , 1996, Neuron.

[42]  Josep Rizo,et al.  Synaptotagmins: C2-Domain Proteins That Regulate Membrane Traffic , 1996, Neuron.

[43]  T. Südhof,et al.  Bipartite Ca2+-Binding Motif in C2 Domains of Synaptotagmin and Protein Kinase C , 1996, Science.

[44]  K. Mikoshiba,et al.  Functional diversity of C2 domains of synaptotagmin family , 1995, Neuroscience Research.

[45]  T. Südhof,et al.  Distinct Ca2+ and Sr2+ Binding Properties of Synaptotagmins , 1995, The Journal of Biological Chemistry.

[46]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[47]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[48]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[49]  E Neher,et al.  Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Richard G. W. Anderson,et al.  Functional properties of multiple synaptotagmins in brain , 1994, Neuron.

[51]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[52]  G. Augustine,et al.  Synaptic vesicle exocytosis: Molecules and models , 1994, Cell.

[53]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[54]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[55]  Thomas C. Südhof,et al.  Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis , 1991, Nature.

[56]  T. Südhof,et al.  Domain structure of synaptotagmin (p65) , 1991, The Journal of biological chemistry.

[57]  R. Kelly,et al.  Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. , 1981, Biochemistry.

[58]  K. Mikoshiba,et al.  Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). , 2001, The Biochemical journal.

[59]  A. Brunger,et al.  Crystal Structure of the Cytosolic C 2 A-C 2 B Domains of Synaptotagmin III : Implications for Ca 1 2-independent SNARE Complex Interaction , 1999 .