Strong coupling in the sub-wavelength limit using metamaterial nanocavities

The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 μm) to the near-infrared (~1.5 μm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10−4 (λ/n)3 from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process.

[1]  Filippo Capolino,et al.  Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties , 2009 .

[2]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[3]  A. Tredicucci,et al.  Intersubband polaritons in a one-dimensional surface plasmon photonic crystal , 2010 .

[4]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[5]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[6]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[7]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[8]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[9]  M. Sinclair,et al.  Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization , 2013 .

[10]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[11]  M. Beck,et al.  Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial , 2011, Science.

[12]  Raffaele Colombelli,et al.  Room-temperature intersubband emission of GaN/AlN quantum wells at /spl lambda/=2.3 /spl mu/m , 2006 .

[13]  A. Tredicucci,et al.  Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light , 2012 .

[14]  Carlo Sirtori,et al.  Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy , 1993 .

[15]  Rodney Loudon,et al.  CORRIGENDUM: The propagation of electromagnetic energy through an absorbing dielectric , 1970 .

[16]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[17]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[18]  I. Brener,et al.  Electrically tunable infrared metamaterials based on depletion-type semiconductor devices , 2012 .

[19]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[20]  Serge Haroche,et al.  Superradiance: An essay on the theory of collective spontaneous emission , 1982 .

[21]  A. A. Anappara,et al.  Tunnel-assisted manipulation of intersubband polaritons in asymmetric coupled quantum wells , 2006 .

[22]  D. Englund,et al.  Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. , 2010, Physical review letters.

[23]  G. Strasser,et al.  Terahertz meta-atoms coupled to a quantum well intersubband transition. , 2011, Optics express.

[24]  A. A. Anappara,et al.  Electrical control of polariton coupling in intersubband microcavities , 2005 .

[25]  A. A. Anappara,et al.  Switching ultrastrong light-matter coupling on a subcycle scale , 2011 .

[26]  Mattias Beck,et al.  Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. , 2011, Physical review letters.

[27]  I. Carusotto,et al.  Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency. , 2006, Physical review letters.

[28]  Carlo Sirtori,et al.  Intersubband polaritons in the electrical dipole gauge , 2012, 1212.5140.

[29]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[30]  Cristiano Ciuti,et al.  Quantum vacuum properties of the intersubband cavity polariton field , 2005, cond-mat/0504021.

[31]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[32]  Anirban Bhattacharyya,et al.  Optically pumped intersubband emission of short-wave infrared radiation with GaN/AlN quantum wells , 2009 .

[33]  Alfred Leitenstorfer,et al.  Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared , 2004 .

[34]  C. Sirtori,et al.  Ultrastrong light-matter coupling regime with polariton dots. , 2010, Physical review letters.

[35]  R. Ruppin,et al.  Electromagnetic energy density in a dispersive and absorptive material , 2002 .

[36]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[37]  C. Sirtori,et al.  Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities , 2011, 1212.4439.

[38]  C. Sirtori,et al.  Charge-induced coherence between intersubband plasmons in a quantum structure. , 2012, Physical review letters.

[39]  I. Brener,et al.  Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells. , 2012, Optics express.

[40]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[41]  A. A. Anappara,et al.  Sub-cycle switch-on of ultrastrong light–matter interaction , 2009, Nature.