Global importance measure methodology for integrated probabilistic risk assessment

An integrated probabilistic risk assessment framework combines spatio-temporal probabilistic simulations of underlying failure mechanisms with classical probabilistic risk assessment logic consisting of event trees and fault trees. The importance measure methods commonly used in classical probabilistic risk assessment, for example, Fussell–Vesely importance measure and Risk Achievement Worth, generate the ranking of components at the basic event level utilizing the one-at-a-time and local methods. These classical importance measure methods, however, are not sufficient for integrated probabilistic risk assessment where, in addition to the component-level risk importance ranking, the ranking of risk-contributing factors (e.g. physical design parameters) associated with the underlying failure mechanisms is desired. In this research, the global importance measure method is suggested and implemented for the integrated probabilistic risk assessment framework. The global importance measure can account for four key aspects of integrated probabilistic risk assessment, including (a) ranking of input parameters at the failure mechanism level based on the contribution to the system risk metrics, (b) uncertainty of input parameters, (c) non-linearity and interactions among input parameters inside the model, and (d) uncertainty associated with the system risk estimates; therefore, it enhances the accuracy of risk importance ranking when the risk model has a high level of non-linearity, interactions, and uncertainties. This article shows (a) qualitative justifications for the selection of the global importance measure method for the integrated probabilistic risk assessment framework and (b) quantitative proof of concept using three case studies, including two illustrative fault tree examples and one practical application of the integrated probabilistic risk assessment framework for Generic Safety Issue 191 at nuclear power plants (a sump blockage issue following a loss-of-coolant accident).

[1]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[2]  Zahra Mohaghegh,et al.  Analyzing Importance Measure methodologies for integrated Probabilistic Risk Assessment in Nuclear Power Plants , 2014 .

[3]  Zahra Mohaghegh,et al.  Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis , 2019, Reliab. Eng. Syst. Saf..

[4]  Zahra Mohaghegh,et al.  Methodological and Practical Comparison of Integrated Probabilistic Risk Assessment (I-PRA) with the Existing Fire PRA of Nuclear Power Plants , 2018 .

[5]  Emanuele Borgonovo,et al.  Invariant Probabilistic Sensitivity Analysis , 2013, Manag. Sci..

[6]  S. Kaplan,et al.  On The Quantitative Definition of Risk , 1981 .

[7]  Zahra Mohaghegh,et al.  An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants , 2018, Reliab. Eng. Syst. Saf..

[8]  Zhenzhou Lu,et al.  A fast computational method for moment-independent uncertainty importance measure , 2014, Comput. Phys. Commun..

[9]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[10]  A. Law,et al.  Relative width sequential confidence intervals for the mean , 1981 .

[11]  Cedric Jean-Marie. Sallaberry,et al.  SOARCA Peach Bottom Atomic Power Station long-term station blackout uncertainty analysis MACCS2 parameters and probabilistic results , 2013 .

[12]  Jon C. Helton,et al.  Multiple predictor smoothing methods for sensitivity analysis: Example results , 2008, Reliab. Eng. Syst. Saf..

[13]  Andrea Alfonsi,et al.  Industry Application Emergency Core Cooling System Cladding Acceptance Criteria Early Demonstration , 2015 .

[14]  Zahra Mohaghegh,et al.  Developing a new fire PRA framework by integrating probabilistic risk assessment with a fire simulation module , 2014 .

[15]  Ville Tulkki,et al.  The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior , 2014 .

[16]  Zahra Mohaghegh,et al.  Sensitivity Analyses of a Simulation Model for Estimating Fiber-Induced Sump Screen and Core Failure Rates , 2014 .

[17]  Ronald L. Iman,et al.  The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments , 1991 .

[18]  David P. Morton,et al.  CASA grande uncertainty propagation framework for risk-informed closure of GSI-191 , 2013 .

[19]  Zhenzhou Lu,et al.  Parametric sensitivity analysis of the importance measure , 2012 .

[20]  Timo Ikonen,et al.  Comparison of global sensitivity analysis methods – Application to fuel behavior modeling , 2016 .

[21]  Emanuele Borgonovo,et al.  Sampling strategies in density-based sensitivity analysis , 2012, Environ. Model. Softw..

[22]  R. S. Denning,et al.  Measures of risk importance and their applications. [PWR; BWR] , 1983 .

[23]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[24]  Jun Xia,et al.  An efficient integrated approach for global sensitivity analysis of hydrological model parameters , 2013, Environ. Model. Softw..

[25]  Randall D. Manteufel,et al.  Evaluating the convergence of latin hypercube sampling , 2000 .

[26]  E. Borgonovo Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[27]  Karl N. Fleming,et al.  Location Dependent Loss of Coolant Accident Frequencies for Risk-Informed Resolution of Generic Safety Issue 191 , 2012 .

[28]  N. Siu,et al.  Risk assessment for dynamic systems: An overview , 1994 .

[29]  Terje Aven,et al.  On the use of uncertainty importance measures in reliability and risk analysis , 2010, Reliab. Eng. Syst. Saf..

[30]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[31]  Ronald L. Iman,et al.  A Matrix-Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees1 , 1987 .

[32]  Tunc Aldemir,et al.  A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants , 2013 .

[33]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[34]  A. Saltelli,et al.  Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques , 1990 .

[35]  Antoine Rauzy,et al.  Efficient algorithms to assess component and gate importance in fault tree analysis , 2001, Reliab. Eng. Syst. Saf..

[36]  Zhenzhou Lu,et al.  Moment‐Independent Sensitivity Analysis Using Copula , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[37]  Zahra Mohaghegh,et al.  The Benefits of Using a Risk-Informed Approach to Resolving GSI-191 , 2012 .

[38]  Jon C. Helton,et al.  Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant , 2000, Reliab. Eng. Syst. Saf..

[39]  Patrick M. Reed,et al.  Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models , 2013 .

[40]  Stefan Finsterle,et al.  Making sense of global sensitivity analyses , 2014, Comput. Geosci..

[41]  Francesca Pianosi,et al.  A simple and efficient method for global sensitivity analysis based on cumulative distribution functions , 2015, Environ. Model. Softw..

[42]  Zahra Mohaghegh,et al.  Integrated PRA methodology to advance fire risk modeling for nuclear power plants , 2015 .

[43]  Curtis L. Smith,et al.  Composite multilinearity, epistemic uncertainty and risk achievement worth , 2012, Eur. J. Oper. Res..

[44]  Zahra Mohaghegh,et al.  A New Integrated Framework to Advance Fire Probabilistic Risk Analysis of Nuclear Power Plants , 2013 .

[45]  Asko Arkoma,et al.  Sensitivity analysis of local uncertainties in large break loss-of-coolant accident (LB-LOCA) thermo-mechanical simulations , 2016 .

[46]  Zhenzhou Lu,et al.  Variable importance analysis: A comprehensive review , 2015, Reliab. Eng. Syst. Saf..

[47]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[48]  Ronald L. Iman,et al.  Comparison of Maximus/Bounding and Bayes/Monte Carlo for fault tree uncertainty analysis , 1986 .

[49]  Biagio Ciuffo,et al.  Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs , 2015, Reliab. Eng. Syst. Saf..

[50]  Robert T. Clemen,et al.  Making Hard Decisions with DecisionTools , 2013 .

[51]  Enrico Zio,et al.  A Bayesian ensemble of sensitivity measures for severe accident modeling , 2015 .

[52]  M. van der Borst,et al.  An overview of PSA importance measures , 2001, Reliab. Eng. Syst. Saf..

[53]  Louis Anthony Tony Cox Why risk is not variance: an expository note. , 2008, Risk analysis : an official publication of the Society for Risk Analysis.

[54]  Emanuele Borgonovo,et al.  Production , Manufacturing and Logistics A new time-independent reliability importance measure , 2016 .

[55]  Justin Pence,et al.  An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants , 2019, Reliab. Eng. Syst. Saf..

[56]  Emanuele Borgonovo,et al.  Comparison of global sensitivity analysis techniques and importance measures in PSA , 2003, Reliab. Eng. Syst. Saf..

[57]  Andrea Alfonsi,et al.  Measuring risk-importance in a Dynamic PRA framework , 2019 .

[58]  Zahra Mohaghegh,et al.  Towards physics-based seismic PRA , 2013 .

[59]  A. Saltelli,et al.  Sensitivity analysis of an environmental model: an application of different analysis methods , 1997 .

[60]  A. Saltelli,et al.  Sensitivity Anaysis as an Ingredient of Modeling , 2000 .

[61]  Emanuele Borgonovo,et al.  Epistemic Uncertainty in the Ranking and Categorization of Probabilistic Safety Assessment Model Elements: Issues and Findings , 2008, Risk analysis : an official publication of the Society for Risk Analysis.

[62]  H Christopher Frey,et al.  OF SENSITIVITY ANALYSIS , 2001 .

[63]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[64]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[65]  S. Hora,et al.  A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis , 1990 .

[66]  Toshimitsu Homma,et al.  Sensitivity analysis of a passive decay heat removal system under a post-loss of coolant accident condition , 2012 .

[67]  Max D. Morris,et al.  Sampling plans based on balanced incomplete block designs for evaluating the importance of computer model inputs , 2006 .

[68]  R. Iman,et al.  A measure of top-down correlation , 1987 .

[69]  Zhenzhou Lu,et al.  Monte Carlo simulation for moment-independent sensitivity analysis , 2013, Reliab. Eng. Syst. Saf..

[70]  S. Tarantola,et al.  Moment independent and variance‐based sensitivity analysis with correlations: An application to the stability of a chemical reactor , 2008 .

[71]  Ali Mosleh Common cause failures: An analysis methodology and examples , 1991 .

[72]  Zahra Mohaghegh,et al.  Modeling the interface of manual fire protection actions with fire progression in fire probabilistic risk assessment of nuclear power plants , 2017 .

[73]  Jon C. Helton,et al.  Multiple predictor smoothing methods for sensitivity analysis: Description of techniques , 2008, Reliab. Eng. Syst. Saf..

[74]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[75]  William A. Huber,et al.  “Why Risk Is Not Variance: An Expository Note” , 2010, Risk analysis : an official publication of the Society for Risk Analysis.

[76]  Toshimitsu Homma,et al.  A New Importance Measure for Sensitivity Analysis , 2010 .

[77]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[78]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[79]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[80]  Emanuele Borgonovo,et al.  Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..

[81]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[82]  Wei Tian,et al.  A review of sensitivity analysis methods in building energy analysis , 2013 .

[83]  Zhenzhou Lu,et al.  Moment-independent regional sensitivity analysis: Application to an environmental model , 2013, Environ. Model. Softw..

[84]  A. Saltelli,et al.  Tackling quantitatively large dimensionality problems , 1999 .

[85]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[86]  Li Luyi,et al.  Moment-independent importance measure of basic variable and its state dependent parameter solution , 2012 .

[87]  Emanuele Borgonovo,et al.  On the importance of uncertain factors in seismic fragility assessment , 2013, Reliab. Eng. Syst. Saf..

[88]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[89]  Xiaobo Zhou,et al.  Global Sensitivity Analysis , 2017, Encyclopedia of GIS.

[90]  Emanuele Borgonovo,et al.  A Common Rationale for Global Sensitivity Measures and Their Estimation , 2016, Risk analysis : an official publication of the Society for Risk Analysis.

[91]  Emanuele Borgonovo,et al.  A new importance measure for risk-informed decision making , 2001, Reliab. Eng. Syst. Saf..

[92]  Qiao Liu,et al.  A new computational method of a moment-independent uncertainty importance measure , 2009, Reliab. Eng. Syst. Saf..

[93]  Yves Dutuit,et al.  On the extension of Importance Measures to complex components , 2015, Reliab. Eng. Syst. Saf..

[94]  Zhenzhou Lu,et al.  A Stable Approach Based on Asymptotic Space Integration for Moment‐Independent Uncertainty Importance Measure , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[95]  Seyed Mohsen Hoseyni,et al.  A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology , 2014, Reliab. Eng. Syst. Saf..

[96]  Ali Mosleh,et al.  The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants , 1996 .

[97]  Zahra Mohaghegh,et al.  RoverD: Use of Test Data in GSI-191 Risk Assessment , 2016 .

[98]  Charles Yoe,et al.  Primer on Risk Analysis: Decision Making Under Uncertainty , 2011 .

[99]  Emanuele Borgonovo,et al.  Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..

[100]  S. Tarantola,et al.  Moment Independent Importance Measures: New Results and Analytical Test Cases , 2011, Risk analysis : an official publication of the Society for Risk Analysis.

[101]  Man Cheol Kim,et al.  Comparison of two approaches for establishing performance criteria related to Maintenance Rule , 2015 .

[102]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[103]  Douglas M. Osborn,et al.  SOARCA Peach Bottom Atomic Power Station long-term station blackout uncertainty analysis probabilistic methodology and regression technique , 2013 .

[104]  Jon C. Helton,et al.  Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .

[105]  Ming Ye,et al.  Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications , 2015 .

[106]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[107]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[108]  M. Cheok,et al.  Use of importance measures in risk-informed regulatory applications , 1998 .

[109]  Jon C. Helton,et al.  Use of Replicated Latin Hypercube Sampling to Estimate Sampling Variance in Uncertainty and Sensitivity Analysis Results for the Geologic Disposal of Radioactive Waste , 2010 .