Iterated claws have real-rooted genus polynomials
暂无分享,去创建一个
Jonathan L. Gross | Toufik Mansour | Thomas W. Tucker | David G. L. Wang | David G. L. Wang | T. Mansour | J. Gross | T. Tucker
[1] Jonathan L. Gross,et al. Genus Distribution of Graph Amalgamations: Pasting at Root-Vertices , 2010, Ars Comb..
[2] Jonathan L. Gross,et al. Genus distributions of graphs under edge-amalgamations , 2010, Ars Math. Contemp..
[3] Saul Stahl. ON THE ZEROS OF SOME GENUS POLYNOMIALS , 1997 .
[4] Jonathan L. Gross,et al. Genus distributions for bouquets of circles , 1989, J. Comb. Theory, Ser. B.
[5] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[6] Jonathan L. Gross,et al. Genus distribution of graph amalgamations: self-pasting at root-vertices , 2011, Australas. J Comb..
[7] Yi Wang,et al. A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..
[8] Jonathan L. Gross,et al. Embeddings of graphs of fixed treewidth and bounded degree , 2013, Ars Math. Contemp..
[9] Jonathan L. Gross,et al. Log-Concavity of Combinations of Sequences and Applications to Genus Distributions , 2014, SIAM J. Discret. Math..
[11] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[12] Richard Statman,et al. Genus distributions for two classes of graphs , 1989, J. Comb. Theory, Ser. B.
[13] Jonathan L. Gross,et al. Genus Distributions for Iterated Claws , 2014, Electron. J. Comb..
[14] L. Beineke,et al. Topics in Topological Graph Theory , 2009 .