Improving quantum algorithms for quantum chemistry

We present several improvements to the standard Trotter-Suzuki based algorithms used in the simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner transformations are implemented to reduce their cost from linear or logarithmic in the number of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we demonstrate how many operations can be parallelized, leading to a further linear decrease in the parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are validated using numerical simulation and detailed gate counts are given for realistic molecules.

[1]  W. Marsden I and J , 2012 .

[2]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[3]  Giorgios Kollias,et al.  Universal Programmable Quantum Circuit Schemes to Emulate an Operator , 2012, The Journal of chemical physics.

[4]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[5]  I. Kassal,et al.  Quantum algorithm for molecular properties and geometry optimization. , 2009, The Journal of chemical physics.

[6]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[7]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[8]  R. Feynman Simulating physics with computers , 1999 .

[9]  L. Lamata,et al.  Efficient quantum simulation of fermionic and bosonic models in trapped ions , 2013, 1312.2849.

[10]  Sabre Kais,et al.  Decomposition of Unitary Matrices for Finding Quantum Circuits , 2010, The Journal of chemical physics.

[11]  Sergio Boixo,et al.  Introduction to Quantum Algorithms for Physics and Chemistry , 2012, 1203.1331.

[12]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[13]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[14]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[15]  A. Läuchli,et al.  Ground-state energy and spin gap of spin-1/2 Kagome-Heisenberg antiferromagnetic clusters: Large-scale exact diagonalization results , 2011, 1103.1159.

[16]  Nathan Wiebe,et al.  Product formulas for exponentials of commutators , 2012, 1211.4945.

[17]  M. Hastings,et al.  Can quantum chemistry be performed on a small quantum computer , 2013 .

[18]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[19]  Peter J. Love,et al.  Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix , 2013, 1312.2579.

[20]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[21]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[22]  R. Ball,et al.  Fermions without fermion fields. , 2004, Physical review letters.

[23]  Andreas M. Lauchli,et al.  Numerical study of magnetization plateaux in the spin-1/2 kagome Heisenberg antiferromagnet , 2013, 1307.0975.

[24]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[25]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[26]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[27]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[28]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[29]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[30]  L. Landau Fermionic quantum computation , 2000 .

[31]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[32]  J. Whitfield Communication: Spin-free quantum computational simulations and symmetry adapted states. , 2013, The Journal of chemical physics.

[33]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[34]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[35]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[36]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[37]  Toru Sakai,et al.  Numerical-Diagonalization Study of Spin Gap Issue of the Kagome Lattice Heisenberg Antiferromagnet , 2011, 1103.5829.

[38]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[39]  Robert J. Harrison,et al.  Calibrating quantum chemistry: A multi-teraflop, parallel-vector, full-configuration interaction program for the Cray-X1 , 2005, ACM/IEEE SC 2005 Conference (SC'05).