Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing.

A nanostructured multicatalyst system consisting of Fe(3)O(4) magnetic nanoparticles (MNPs) as peroxidase mimetics and an oxidative enzyme entrapped in large-pore-sized mesoporous silica has been developed for convenient colorimetric detection of biologically important target molecules. The construction of the nanocomposites begins with the incorporation of MNPs on the walls of mesocellular silica pores by impregnating Fe(NO(3))(3)·9H(2)O, followed by the immobilization of oxidative enzymes. Glutaraldehyde crosslinking was employed to prevent enzymes leaching from the pores and led to over 20 wt% loading of the enzyme. The oxidase in the nanocomposite generates H(2)O(2) through its catalytic action for target molecules and subsequently activates MNPs to convert selected substrates into colored products. Using this strategy, two different biosensing systems were constructed employing glucose oxidase and cholesterol oxidase and their analytical capabilities were successfully verified by colorimetrically detecting the corresponding target molecules with excellent selectivity, sensitivity, reusability, and stability. Future potential applications of this technology range from biosensors to multicatalyst reactors.

[1]  Bradley F. Chmelka,et al.  MESOCELLULAR SILICEOUS FOAMS WITH UNIFORMLY SIZED CELLS AND WINDOWS , 1999 .

[2]  G. Vasta,et al.  Development of a PCR-ELISA assay for diagnosis of Perkinsus marinus and Perkinsus atlanticus infections in bivalve molluscs. , 2004, Molecular and cellular probes.

[3]  R. Ansell,et al.  Cholesterol oxidase: sources, physical properties and analytical applications , 2000, The Journal of Steroid Biochemistry and Molecular Biology.

[4]  A. Schweiger,et al.  On the Origin of the Low-Spin Character of Cytochrome P450cam in the Resting State-Investigations of Enzyme Models with Pulse EPR and ENDOR Spectroscopy. , 1998, Angewandte Chemie.

[5]  C. N. Ramchand,et al.  Direct binding of protein to magnetic particles , 1997 .

[6]  Akon Higuchi,et al.  Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. , 2008, Analytical chemistry.

[7]  H. Park,et al.  A polydiacetylene microchip based on a biotin-streptavidin interaction for the diagnosis of pathogen infections. , 2008, Small.

[8]  T. Ha,et al.  5‐(β‐Cyclodextrinylamino)‐5‐Deoxy‐α‐D‐Riboses as Models for Nuclease, Ligase, Phosphatase, and Phosphorylase , 2000 .

[9]  C. Niemeyer,et al.  Covalent hemin-DNA adducts for generating a novel class of artificial heme enzymes. , 2005, Angewandte Chemie.

[10]  H. Chang,et al.  Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. , 2005, Small.

[11]  Ying Zhuo,et al.  Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. , 2009, Biomaterials.

[12]  Yu Zhang,et al.  Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. , 2007, Nature nanotechnology.

[13]  Wen-Hau Zhang,et al.  Self-Organization of Ordered Silver Nanocrystal Arrays on Cubic Mesoporous Silica Surfaces , 1999 .

[14]  Itamar Willner,et al.  Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. , 2006, Analytical chemistry.

[15]  C. Niemeyer,et al.  Kovalente Hämin‐DNA‐Addukte zur Herstellung einer neuartigen Klasse artifizieller Häm‐Enzyme , 2005 .

[16]  Chen,et al.  cis-Dihydroxylation of Olefins by a Non-Heme Iron Catalyst: A Functional Model for Rieske Dioxygenases. , 1999, Angewandte Chemie.

[17]  A. Jäschke,et al.  Nucleic acid enzymes. , 2005, Current opinion in biotechnology.

[18]  Taeghwan Hyeon,et al.  Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. , 2005, Angewandte Chemie.

[19]  S. Gropper,et al.  Galactose content of baby food meats: considerations for infants with galactosemia. , 2003, Journal of the American Dietetic Association.

[20]  J. M. Luttinger,et al.  Theory of Dipole Interaction in Crystals , 1946 .

[21]  Raz Jelinek,et al.  A colorimetric assay for rapid screening of antimicrobial peptides , 2000, Nature Biotechnology.

[22]  M. Ghosh,et al.  Durch 4‐Heterocyclohexanone katalysierte Hydrolyse von Amiden: niedermolekulare Serinprotease‐Mimetika , 1999 .

[23]  H. Chang,et al.  One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization , 2008 .

[24]  G. F. Joyce,et al.  Directed evolution of nucleic acid enzymes. , 2003, Annual review of biochemistry.

[25]  F. Gao,et al.  Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles , 2005 .

[26]  S. Santra,et al.  Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. , 2009, Journal of the American Chemical Society.

[27]  Taeghwan Hyeon,et al.  Crosslinked enzyme aggregates in hierarchically‐ordered mesoporous silica: A simple and effective method for enzyme stabilization , 2007, Biotechnology and bioengineering.

[28]  Shen-ming Chen,et al.  A Highly Selective Amperometric Hydrogen Peroxide Sensor Based on Silicomolybdate‐Doped‐Glutaraldehyde‐Cross‐Linked Poly‐L‐Lysine Film Modified Glassy Carbon Electrode , 2009 .

[29]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[30]  Erkang Wang,et al.  Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. , 2008, Analytical chemistry.

[31]  Yuyan Shao,et al.  Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2 , 2009 .

[32]  Bansi D Malhotra,et al.  Recent advances in cholesterol biosensor. , 2008, Biosensors & bioelectronics.

[33]  Hyun Gyu Park,et al.  Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. , 2011, Small.

[34]  H. Park,et al.  Universal Colorimetric Detection of Nucleic Acids Based on Polydiacetylene (PDA) Liposomes , 2008 .

[35]  P. Bomans,et al.  Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy , 2003, Nature materials.

[36]  Jinwoo Cheon,et al.  Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. , 2008, Accounts of chemical research.

[37]  Juewen Liu,et al.  Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes , 2006, Nature Protocols.

[38]  Xiaogang Qu,et al.  Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection , 2010, Advanced materials.

[39]  Daejin Kim,et al.  Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. , 2009, Angewandte Chemie.

[40]  Chad A Mirkin,et al.  Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. , 2007, Nano letters.

[41]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[42]  Kui Chen,et al.  Ein Nicht‐Häm‐Eisenkomplex als Katalysator für die cis‐Dihydroxylierung von Olefinen: ein funktionelles Modell für Rieske‐Dioxygenasen , 1999 .

[43]  R. Bachmann,et al.  Zum Problem des Low-spin-Charakters von Cytochrom P450cam im „Resting State” – Untersuchungen von Enzymmodellen mit Puls-EPR- und ENDOR-Spektroskopie , 1998 .

[44]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[45]  S. Tolbert,et al.  Controlling Magnetic Coupling between Cobalt Nanoparticles through Nanoscale Confinement in Hexagonal Mesoporous Silica , 2003 .

[46]  S. Daunert,et al.  Fluorescence Glucose Detection: Advances Toward the Ideal In Vivo Biosensor , 2004, Journal of Fluorescence.

[47]  Lizeng Gao,et al.  Magnetite Nanoparticle-Linked Immunosorbent Assay , 2008 .

[48]  Yadong Yin,et al.  Superparamagnetic magnetite colloidal nanocrystal clusters. , 2007, Angewandte Chemie.

[49]  Kanyi Pu,et al.  Intercalating Dye Harnessed Cationic Conjugated Polymer for Real‐Time Naked‐Eye Recognition of Double‐Stranded DNA in Serum , 2009 .

[50]  Seung M. Oh,et al.  Development of a New Mesoporous Carbon Using an HMS Aluminosilicate Template , 2000 .

[51]  Faquan Yu,et al.  The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. , 2009, Biomaterials.

[52]  Jeremy K. M. Sanders,et al.  POLYOL RECOGNITION BY A STEROID-CAPPED PORPHYRIN. ENHANCEMENT AND MODULATION OF MISFIT GUEST BINDING BY ADDED WATER OR METHANOL , 1995 .