New Routes in the High-Throughput Screening of Toxic Proteins Using Immunochemical Tools

The chapter reviews several aspects related to the mechanism of action of toxic proteins used as biological warfare agents, together with the latest advances in immunosensor development. Emphasis will be put on the role played by the nanoparticle technology in the sensing and transduction design. The potential applications of the nanostructured immunosensors in point-of-care systems and the amenability of these devices for detection on-the-field will be critically commented.

[1]  Yan Zhang,et al.  Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels. , 2012, The Analyst.

[2]  D. Gill,et al.  Bacterial toxins: a table of lethal amounts , 1982, Microbiological reviews.

[3]  Carles Cané,et al.  Comparison of two types of acoustic biosensors to detect immunoreactions: Love-wave sensor working in dynamic mode and QCM working in static mode , 2013 .

[4]  Omar Qazi,et al.  Characterisation of a panel of anti-tetanus toxin single-chain Fvs reveals cooperative binding , 2010, Molecular immunology.

[5]  Kathryn Brown,et al.  Up in the Air , 2004, Science.

[6]  Xianbo Lu,et al.  Development of biosensor technologies for analysis of environmental contaminants , 2014 .

[7]  Chris A. Rowe-Taitt,et al.  Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. , 2000, Biosensors & bioelectronics.

[8]  Dharanipragada Subrahmanyan,et al.  An unusual manifestation of Abrus precatorius poisoning: A report of two cases , 2008, Clinical toxicology.

[9]  J. Holmgren,et al.  Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ross D. Peterson,et al.  Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. , 2015, Biosensors & bioelectronics.

[11]  Jay W. Grate,et al.  Advances in assays and analytical approaches for botulinum-toxin detection , 2010 .

[12]  Qing Liu,et al.  Synthesis, Characterization, and Application of Antibody Functionalized Fluorescent Silica Nanoparticles , 2013 .

[13]  Jay W Grate,et al.  Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. , 2009, Biosensors & bioelectronics.

[14]  Ning Gan,et al.  An Ultrasensitive Electrochemical Immunosensor for HIV p24 Based on Fe3O4@SiO2 Nanomagnetic Probes and Nanogold Colloid-Labeled Enzyme–Antibody Copolymer as Signal Tag , 2013, Materials.

[15]  Francesco De Angelis,et al.  Nano-patterned SERS substrate: application for protein analysis vs. temperature. , 2009, Biosensors & bioelectronics.

[16]  Yue Yuan,et al.  Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1. , 2012, The Analyst.

[17]  Heng Zhang,et al.  A highly sensitive europium nanoparticle-based lateral flow immunoassay for detection of chloramphenicol residue , 2013, Analytical and Bioanalytical Chemistry.

[18]  H. Bigalke,et al.  Medical aspects of toxin weapons. , 2005, Toxicology.

[19]  Tao Zhang,et al.  Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection , 2014, Nanoscale Research Letters.

[20]  Oussama M. El-Kadri,et al.  Recent advances in gold and silver nanoparticles: synthesis and applications. , 2014, Journal of nanoscience and nanotechnology.

[21]  Stephen M. Griffey,et al.  Ricin Toxicokinetics and Its Sensitive Detection in Mouse Sera or Feces Using Immuno-PCR , 2010, PloS one.

[22]  D. Russell,et al.  Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor , 1992, Cell.

[23]  Omowunmi A. Sadik,et al.  Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring , 2005 .

[24]  Valérie Gros,et al.  Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. , 2007, Journal of immunological methods.

[25]  Pedro V. Baptista,et al.  Noble Metal Nanoparticles for Biosensing Applications , 2012, Sensors.

[26]  Zafar Hussain Ibupoto,et al.  Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements , 2014, Sensors.

[27]  Yuping Bao,et al.  Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. , 2014, Journal of materials chemistry. B.

[28]  Mahdi Emami,et al.  An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2-iron oxide nanoparticle bioconjugates. , 2014, The Analyst.

[29]  A. Herr,et al.  Protein immobilization techniques for microfluidic assays. , 2013, Biomicrofluidics.

[30]  J. Justin Gooding,et al.  Biosensor technology for detecting biological warfare agents : Recent progress and future trends , 2006 .

[31]  T. Rocha-Santos,et al.  Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. , 2013, Talanta.

[32]  Hai-Long Wu,et al.  One Step Highly Sensitive Piezoelectric Agglutination Method for Cholera Toxin Detection Using GM1 Incorporated Liposome , 2011 .

[33]  S. Leppla,et al.  Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases , 1994, Infection and immunity.

[34]  A. Karande,et al.  Abrin and Immunoneutralization: A Review , 2014 .

[35]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  T F McGrath,et al.  Biosensors for the analysis of microbiological and chemical contaminants in food , 2012, Analytical and Bioanalytical Chemistry.

[37]  José M. Pingarrón,et al.  Biosensors in Forensic Analysis , 2016 .

[38]  Aiguo Wu,et al.  A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. , 2012, The Analyst.

[39]  Marius Grundmann,et al.  Cover Picture: One decade of fully transparent oxide thin‐film transistors: fabrication, performance and stability (Phys. Status Solidi RRL 9/2013) , 2013 .

[40]  Ana-Maria Gurban,et al.  Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats , 2015, Sensors.

[41]  Carles Cané,et al.  Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents , 2014, Sensors.

[42]  Marius Grundmann,et al.  One decade of fully transparent oxide thin‐film transistors: fabrication, performance and stability , 2013 .

[43]  Na Li,et al.  Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification. , 2012, Analytical chemistry.

[44]  Dominique Rebière,et al.  Multipurpose Love acoustic wave immunosensor for bacteria, virus or proteins detection , 2008 .

[45]  C. Codeço Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir , 2001, BMC infectious diseases.

[46]  David R. Franz,et al.  Defense Against Toxin Weapons , 2005 .

[47]  N. Matoba,et al.  Cholera Toxin B: One Subunit with Many Pharmaceutical Applications , 2015, Toxins.

[48]  Raquel Manzano,et al.  Fragment C of Tetanus Toxin: New Insights into Its Neuronal Signaling Pathway , 2012, International journal of molecular sciences.

[49]  J. Patočka,et al.  Protein biotoxins of military significance. , 2006, Acta medica.

[50]  Subash C B Gopinath,et al.  Current aspects in immunosensors. , 2014, Biosensors & bioelectronics.

[51]  Bo Mattiasson,et al.  A capacitive immunosensor for detection of cholera toxin. , 2009, Analytica chimica acta.

[52]  Onur Tigli,et al.  Zinc oxide nanostructures: from growth to application , 2013, Journal of Materials Science.

[53]  D. Ladant,et al.  The comprehensive sourcebook of bacterial protein toxins , 1999 .

[54]  Tore-Geir Iversen,et al.  Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine , 2010, FEBS letters.

[55]  Subash C. B. Gopinath,et al.  Observations of Immuno-Gold Conjugates on Influenza Viruses Using Waveguide-Mode Sensors , 2013, PloS one.

[56]  Wei Liu,et al.  A New Electrochemiluminescence Immunoassay Based on Magnetic Microbeads as Carrier of Labels , 2013 .

[57]  María-Isabel Rocha-Gaso,et al.  Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review , 2009, Sensors.

[58]  U. Narang,et al.  Fiber optic-based biosensor for ricin. , 1997, Biosensors & bioelectronics.

[59]  Zhenhong Jia,et al.  Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. , 2013, Biosensors & bioelectronics.

[60]  S. Satija,et al.  Cholera toxin assault on lipid monolayers containing ganglioside GM1. , 2004, Biophysical journal.

[61]  Guozhen Liu,et al.  Covalent functionalization of gold nanoparticles as electronic bridges and signal amplifiers towards an electrochemical immunosensor for botulinum neurotoxin type A. , 2014, Biosensors & bioelectronics.

[62]  Mamas I. Prodromidis,et al.  Impedimetric immunosensors—A review , 2010 .

[63]  A. Abad‐Fuentes,et al.  Applications of quantum dots as probes in immunosensing of small-sized analytes. , 2013, Biosensors & bioelectronics.

[64]  K. Sandvig,et al.  Penetration of protein toxins into cells. , 2000, Current opinion in cell biology.

[65]  Rebecca Y Lai,et al.  Design and characterization of an electrochemical peptide-based sensor fabricated via"click" chemistry. , 2011, Chemical communications.

[66]  Arunas Ramanavicius,et al.  Application of oriented and random antibody immobilization methods in immunosensor design , 2013 .

[67]  L. Stanker,et al.  Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. , 2013, Journal of agricultural and food chemistry.

[68]  Maurizio Prato,et al.  Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. , 2011, Small.

[69]  Philip K. Russell,et al.  Botulinum toxin as a biological weapon: medical and public health management. , 2001, JAMA.

[70]  Ralf Trapp,et al.  The Chemical Weapons Convention: A Commentary , 2014 .

[71]  C. Bala,et al.  A modular electrochemical peptide-based sensor for antibody detection. , 2014, Chemical communications.

[72]  Armando C. Duarte,et al.  Review of analytical figures of merit of sensors and biosensors in clinical applications , 2010 .

[73]  Kobra Omidfar,et al.  New analytical applications of gold nanoparticles as label in antibody based sensors. , 2013, Biosensors & bioelectronics.

[74]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[75]  Hannu Korkeala,et al.  Laboratory Diagnostics of Botulism , 2006, Clinical Microbiology Reviews.

[76]  B Mattiasson,et al.  Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor. , 2010, Biosensors & bioelectronics.

[77]  Aleksandr Simonian,et al.  Novel trends in affinity biosensors: current challenges and perspectives , 2014 .

[78]  Lili He,et al.  Rapid detection of ricin in milk using immunomagnetic separation combined with surface-enhanced Raman spectroscopy. , 2011, Journal of food science.

[79]  Kirsten Sandvig,et al.  Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro , 2013 .

[80]  Piia von Lode,et al.  Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. , 2005 .

[81]  Jean-Michel Kauffmann,et al.  Anti-Clostridium tetani antibody determination in serum samples by amperometric immunosensing , 2010 .

[82]  César Fernández-Sánchez,et al.  Improving immunosensor performance through oriented immobilization of antibodies on carbon nanotube composite surfaces. , 2013, Biosensors & bioelectronics.

[83]  A. Duarte,et al.  Recent developments in recognition elements for chemical sensors and biosensors , 2015 .

[84]  Volker Stadler,et al.  Sensing Immune Responses with Customized Peptide Microarrays , 2012, Biointerphases.

[85]  Kenneth T. V. Grattan,et al.  Gold nanorod-based localized surface plasmon resonance biosensors: A review , 2014 .

[86]  Sarita,et al.  Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. , 2015, Biosensors & bioelectronics.

[87]  Siok Ghee Ler,et al.  Trends in detection of warfare agents. Detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. , 2006, Journal of chromatography. A.

[88]  J. Barbieri,et al.  Tetanus Toxin and Botulinum Toxin A Utilize Unique Mechanisms To Enter Neurons of the Central Nervous System , 2012, Infection and Immunity.

[89]  V. K. Rao,et al.  Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes. , 2010, Talanta.

[90]  Xiaohua Huang,et al.  Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy , 2010 .

[91]  Minhaz Uddin Ahmed,et al.  A carbon nanofiber-based label free immunosensor for high sensitive detection of recombinant bovine somatotropin. , 2015, Biosensors & bioelectronics.

[92]  K. Muzyka Current trends in the development of the electrochemiluminescent immunosensors. , 2014, Biosensors & bioelectronics.

[93]  Na Zhang,et al.  Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. , 2004, The Analyst.

[94]  Ye Wang,et al.  Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer , 2010, Sensors.

[95]  Jinkai Zheng,et al.  Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. , 2014, Comprehensive reviews in food science and food safety.

[96]  Shaojun Dong,et al.  Biomolecule-nanoparticle hybrids for electrochemical biosensors , 2009 .

[97]  Ivana Lukić,et al.  Key protection factors against tetanus: Anti-tetanus toxin antibody affinity and its ability to prevent tetanus toxin - ganglioside interaction. , 2015, Toxicon : official journal of the International Society on Toxinology.

[98]  K. Sandvig,et al.  Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. , 1996, Physiological reviews.

[99]  T. R. Pisanic,et al.  Quantum dots in diagnostics and detection: principles and paradigms. , 2014, The Analyst.

[100]  Subrayal M. Reddy,et al.  Developments in nanoparticles for use in biosensors to assess food safety and quality , 2014 .

[101]  C. Millard,et al.  Medical Defense Against Protein Toxin Weapons , 2005 .

[102]  Kaiwei Li,et al.  Micro/nano optical fibers for label-free detection of abrin with high sensitivity , 2015 .

[103]  M S Thakur,et al.  Biosensors in food processing , 2013, Journal of Food Science and Technology.

[104]  Axel T Brunger,et al.  Botulinum Neurotoxin Heavy Chain Belt as an Intramolecular Chaperone for the Light Chain , 2007, PLoS pathogens.

[105]  Brigitte G Dorner,et al.  Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. , 2009, The Analyst.

[106]  J M Pingarrón,et al.  Biosensors in forensic analysis. A review. , 2014, Analytica chimica acta.

[107]  J. Brown,et al.  Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. , 1987, The Journal of biological chemistry.