Species distribution models for Peruvian plantcutter improve with consideration of biotic interactions

[1]  M. Araújo,et al.  The importance of biotic interactions for modelling species distributions under climate change , 2007 .

[2]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[3]  Paradzayi Tagwireyi,et al.  Missing in action: Species competition is a neglected predictor variable in species distribution modelling , 2017, PloS one.

[4]  Matthew E. Aiello-Lammens,et al.  spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models , 2015 .

[5]  G. C. Costa,et al.  The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots , 2014 .

[6]  J. Musser,et al.  Interspecific Competition in Grallaria Antpittas: Observations at a Feeder , 2015 .

[7]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[8]  Ramón Ferreyra Los tipos de vegetación de la costa peruana , 1983 .

[9]  Dan L Warren,et al.  Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. , 2011, Ecological applications : a publication of the Ecological Society of America.

[10]  Robert P. Anderson,et al.  Are we overestimating the niche? Removing marginal localities helps ecological niche models detect environmental barriers , 2016, Ecology and evolution.

[11]  J. Morrone Biogeographical regionalisation of the Neotropical region. , 2014, Zootaxa.

[12]  Jorge Soberón Niche and area of distribution modeling: a population ecology perspective , 2010 .

[13]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[14]  T. Clutton‐Brock,et al.  Territoriality and home-range dynamics in meerkats, Suricata suricatta: a mechanistic modelling approach. , 2015, The Journal of animal ecology.

[15]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[16]  A. Peterson,et al.  INTERPRETATION OF MODELS OF FUNDAMENTAL ECOLOGICAL NICHES AND SPECIES' DISTRIBUTIONAL AREAS , 2005 .

[17]  Robert P. Anderson,et al.  When and how should biotic interactions be considered in models of species niches and distributions? , 2017 .

[18]  Dan L. Warren,et al.  Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern , 2014 .

[19]  C. Nilsson,et al.  How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia , 2012 .

[20]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[21]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[22]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[23]  Robert P. Anderson,et al.  The effect of spatially marginal localities in modelling species niches and distributions , 2014 .

[24]  M. Luoto,et al.  Biotic interactions improve prediction of boreal bird distributions at macro‐scales , 2007 .

[25]  Irma Franke,et al.  Escasa presencia y grave amenaza para el “cortarramas peruano”, Phytotoma raimondii , 2015 .

[26]  H. Akaike A new look at the statistical model identification , 1974 .

[27]  Robert A. Boria,et al.  ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models , 2014 .

[28]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .