Computational geometry classically assumes real-number arithmetic which does not exist in actual computers. A solution consists in using integer coordinates for data and exact arithmetic for computations. This approach implies that if the results of an algorithm are the input of another, these results must be rounded to match this hypothesis of integer coordinates. In this paper, we treat the case of two-dimensional Voronoi diagrams and are interested in rounding the Voronoi vertices at grid points while interesting properties of the Voronoi diagram are preserved. These properties are the planarity of the embedding and the convexity of the cells, we give a condition on the grid size to ensure that rounding to the nearest grid point preserve the properties. We also present heuristics to round vertices (not to the nearest) and preserve these properties. Arrondi du diagramme de Voronoo RRsumm : La ggommtrie algorithmique repose ggnnralement sur l'utilisation de nombres exacts non reprrsentables sur un ordinateur rrel. Une solution consiste utiliser des coor-donnnes entiires et faire du calcul exact sur celles-ci. Cette approche implique d'arrondir les rrsultats d'un algorithme si l'on veut pouvoir les rrinjecter dans un autre algorithme. Dans ce rapport, le cas du diagramme de Voronoo bidimensionnel est abordd: on cherche arrondir les sommets de Voronoo aux points d'une grille en conservant les propriitts inttres-santes du diagramme, telles que la planaritt du plongement et la convexitt des cellules. On donne une condition sur le pas de la grille pour garantir que l'arrondi des sommets de Voro-noo aux points de la grille les plus proches conserve ces propriitts. On prrsente galement des heuristiques d'arrondi pour le cas oo le pas de la grille fait que l'arrondi au plus proche ne respecte pas ces propriitts.
[1]
Steven Fortune.
Vertex-Rounding a Three-Dimensional Polyhedral Subdivision
,
1999,
Discret. Comput. Geom..
[2]
R. E. Miles.
On the homogeneous planar Poisson point process
,
1970
.
[3]
Leonidas J. Guibas,et al.
Snap rounding line segments efficiently in two and three dimensions
,
1997,
SCG '97.
[4]
Jean-Daniel Boissonnat,et al.
Shape reconstruction from planar cross sections
,
1988,
Comput. Vis. Graph. Image Process..
[5]
Chee-Keng Yap,et al.
Towards Exact Geometric Computation
,
1997,
Comput. Geom..
[6]
Leonidas J. Guibas,et al.
Rounding arrangements dynamically
,
1995,
SCG '95.
[7]
Jean-Daniel Boissonnat,et al.
Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation
,
1993,
Electronic Imaging.
[8]
Atsuyuki Okabe,et al.
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
1992,
Wiley Series in Probability and Mathematical Statistics.
[9]
Christopher J. Van Wyk,et al.
Efficient exact arithmetic for computational geometry
,
1993,
SCG '93.
[10]
Jean-Daniel Boissonnat,et al.
Robust Plane Sweep for Intersecting Segments
,
2000,
SIAM J. Comput..
[11]
Olivier Devillers.
Computational geometry and discrete computations
,
1996,
DGCI.