On the categorical meaning of Hausdorff and Gromov distances, I
暂无分享,去创建一个
Walter Tholen | Maria Manuel Clementino | W. Tholen | Andrei Akhvlediani | M. M. Clementino | Andrei Akhvlediani
[1] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[2] V. Schmitt. Completions of Non-Symmetric Metric Spaces Via Enriched Categories , 2009 .
[3] R. J. Wood. Ordered Sets via Adjunctions , 2002 .
[4] F. Hausdorff. Grundzüge der Mengenlehre , 1914 .
[5] Isar Stubbe,et al. 'Hausdorff distance' via conical cocompletion , 2009 .
[6] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[7] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[8] Dirk Hofmann,et al. Lawvere Completion and Separation Via Closure , 2007, Appl. Categorical Struct..
[9] F. William Lawvere,et al. Taking categories seriously , 1986 .
[10] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[11] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[12] S. Lack,et al. Introduction to extensive and distributive categories , 1993 .
[13] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[14] D. Pompeiu,et al. Sur la continuité des fonctions de variables complexes , 1905 .
[15] Dirk Hofmann,et al. On extensions of lax monads , 2004 .
[16] Hausdorff and Gromov Distances in Quantale−Enriched Categories , 2008 .
[17] Dirk Hofmann,et al. Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..
[18] Marcello M. Bonsangue,et al. Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..
[19] P. Deligne. PUBLICATIONS MATHÉMATIQUES DE L 'I.H.É.S. , 1961 .