On the categorical meaning of Hausdorff and Gromov distances, I

Abstract Hausdorff and Gromov distances are introduced and treated in the context of categories enriched over a commutative unital quantale V . The Hausdorff functor which, for every V -category X, provides the powerset of X with a suitable V -category structure, is part of a monad on V - Cat whose Eilenberg–Moore algebras are order-complete. The Gromov construction may be pursued for any endofunctor K of V - Cat . In order to define the Gromov “distance” between V -categories X and Y we use V -modules between X and Y, rather than V -category structures on the disjoint union of X and Y. Hence, we first provide a general extension theorem which, for any K, yields a lax extension K ˜ to the category V - Mod of V -categories, with V -modules as morphisms.

[1]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[2]  V. Schmitt Completions of Non-Symmetric Metric Spaces Via Enriched Categories , 2009 .

[3]  R. J. Wood Ordered Sets via Adjunctions , 2002 .

[4]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[5]  Isar Stubbe,et al.  'Hausdorff distance' via conical cocompletion , 2009 .

[6]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[7]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[8]  Dirk Hofmann,et al.  Lawvere Completion and Separation Via Closure , 2007, Appl. Categorical Struct..

[9]  F. William Lawvere,et al.  Taking categories seriously , 1986 .

[10]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[11]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[12]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[13]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[14]  D. Pompeiu,et al.  Sur la continuité des fonctions de variables complexes , 1905 .

[15]  Dirk Hofmann,et al.  On extensions of lax monads , 2004 .

[16]  Hausdorff and Gromov Distances in Quantale−Enriched Categories , 2008 .

[17]  Dirk Hofmann,et al.  Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..

[18]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[19]  P. Deligne PUBLICATIONS MATHÉMATIQUES DE L 'I.H.É.S. , 1961 .