Unary Pattern Avoidance in Partial Words Dense with Holes

A partial word is a sequence of symbols over a finite alphabet that may have some undefined positions, called holes, that match every letter of the alphabet. Previous work completed the classification of all unary patterns with respect to partial word avoidability, as well as the classification of all binary patterns with respect to non-trivial partial word avoidability. In this paper, we pose the problem of avoiding patterns in partial words very dense with holes. We define the concept of hole sparsity, a measure of the frequency of holes in a partial word, and determine the minimum hole sparsity for all unary patterns in the context of trivial and non-trivial avoidability.

[1]  Julien Cassaigne,et al.  Unavoidable binary patterns , 1993, Acta Informatica.

[2]  Gwénaël Richomme,et al.  Some results on k-power-free morphisms , 2002, Theor. Comput. Sci..

[3]  Peter Roth Every binary pattern of length six is avoidable on the two-letter alphabet , 2005, Acta Informatica.

[4]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[5]  Florin Manea,et al.  Freeness of partial words , 2007, Theor. Comput. Sci..

[6]  Pascal Ochem,et al.  A generator of morphisms for infinite words , 2006, RAIRO Theor. Informatics Appl..

[7]  Francine Blanchet-Sadri,et al.  Avoidable binary patterns in partial words , 2010, Acta Informatica.

[8]  David Haussler,et al.  Applications of an Infinite Squarefree CO-CFL , 1985, ICALP.

[9]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[10]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[11]  James D. Currie,et al.  Pattern avoidance: themes and variations , 2005, Theor. Comput. Sci..

[12]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[13]  Francine Blanchet-Sadri Algorithmic Combinatorics on Partial Words , 2012, Int. J. Found. Comput. Sci..

[14]  A. Zimin BLOCKING SETS OF TERMS , 1984 .

[15]  Wojciech Rytter,et al.  Repetitions in strings: Algorithms and combinatorics , 2009, Theor. Comput. Sci..

[16]  Ursula Schmidt,et al.  Avoidable Patterns on Two Letters , 1989, Theor. Comput. Sci..

[17]  Francine Blanchet-Sadri Algorithmic Combinatorics on Partial Words (Discrete Mathematics and Its Applications) , 2007 .

[18]  Jeffrey Shallit,et al.  Avoiding Approximate Squares , 2008, Int. J. Found. Comput. Sci..

[19]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[20]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[21]  Julien Cassaigne Motifs evitables et regularites dans les mots , 1994 .

[22]  David Haussler,et al.  Applications of an Infinite Square-Free CO-CFL , 1987, Theor. Comput. Sci..

[23]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[24]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .