Tone recognition of isolated Cantonese syllables

Tone identification is essential for the recognition of the Chinese language, specifically far Cantonese which is well known for being very rich in tones. The paper presents an efficient method for tone recognition of isolated Cantonese syllables. Suprasegmental feature parameters are extracted from the voiced portion of a monosyllabic utterance and a three-layer feedforward neural network is used to classify these feature vectors. Using a phonologically complete vocabulary of 234 distinct syllables, the recognition accuracy for single-speaker and multispeaker is given by 89.0% and 87.6% respectively. >