Tendencies in ABO3 Perovskite and SrF2, BaF2 and CaF2 Bulk and Surface F-Center Ab Initio Computations at High Symmetry Cubic Structure

We computed the atomic shift sizes of the closest adjacent atoms adjoining the (001) surface F-center at ABO3 perovskites. They are significantly larger than the atomic shift sizes of the closest adjacent atoms adjoining the bulk F-center. In the ABO3 perovskite matrixes, the electron charge is significantly stronger confined in the interior of the bulk oxygen vacancy than in the interior of the (001) surface oxygen vacancy. The formation energy of the oxygen vacancy on the (001) surface is smaller than in the bulk. This microscopic energy distinction stimulates the oxygen vacancy segregation from the perovskite bulk to their (001) surfaces. The (001) surface F-center created defect level is nearer to the (001) surface conduction band (CB) bottom as the bulk F-center created defect level. On the contrary, the SrF2, BaF2 and CaF2 bulk and surface F-center charge is almost perfectly confined to the interior of the fluorine vacancy. The shift sizes of atoms adjoining the bulk and surface F-centers in SrF2, CaF2 and BaF2 matrixes are microscopic as compared to the case of ABO3 perovskites.

[1]  Haines,et al.  High-pressure x-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds. , 1995, Physical review. B, Condensed matter.

[2]  Anatoli I. Popov,et al.  First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides , 2020 .

[3]  Gunnar Borstel,et al.  Ab initio calculations of the CaF2 electronic structure and F centers , 2005 .

[4]  Tingkai Zhao,et al.  Effect of Ca colloids on in-situ ionoluminescence of CaF2 single crystals , 2020, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[5]  S. Piskunov,et al.  Ab initio hybrid DFT calculations of BaTiO 3 bulk and BaO-terminated (001) surface F-centers , 2017 .

[6]  Roberts Eglitis,et al.  Ab Initio Calculations of the Transfer and Aggregation of F Centers in CaF2 , 2012 .

[7]  W. Pisarski,et al.  Spectroscopic Properties of Eu3+ Ions in Sol–Gel Materials Containing Calcium Fluoride Nanocrystals , 2019, physica status solidi (b).

[8]  V. A. Eremin,et al.  Oxygen isotope exchange in doped calcium and barium zirconates , 2016 .

[9]  R. Cohen Surface effects in ferroelectrics: Periodic slab computations for BaTiO3 , 1996, mtrl-th/9609002.

[10]  S. Piskunov,et al.  First principles calculations of SrZrO3 bulk and ZrO2-terminated (001) surface F centers , 2016 .

[11]  A. Mir,et al.  The displacement effect of a fluorine atom in CaF2 on the band structure , 2018 .

[12]  Á. Ibarra,et al.  Calculation of damage function of Al2O3 in irradiation facilities for fusion reactor applications , 2013 .

[13]  S. Middey,et al.  Oxygen vacancy induced electronic structure modification of KTaO3 , 2020, 2005.13281.

[14]  Yilun Shang,et al.  Lower Bounds for Gaussian Estrada Index of Graphs , 2018, Symmetry.

[15]  M. Lanza,et al.  Calcium fluoride as high-k dielectric for 2D electronics , 2021, Applied Physics Reviews.

[16]  Junhui Weng,et al.  Layer-dependent band gaps and dielectric constants of ultrathin fluorite crystals , 2021 .

[17]  A. Filippetti,et al.  Electronic properties of fluorides by efficient approximated quasiparticle DFT-1/2 and PSIC methods: BaF2, CaF2 and CdF2 as test cases , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  T. Suemoto,et al.  Dynamics of nuclear wave packets at the F center in alkali halides , 2011 .

[19]  Roberts Eglitis,et al.  Ab initio calculations of the BaF2 bulk and surface F centres , 2006 .

[20]  M. Yoshino,et al.  Modification of Local Electronic Structures Due to Phase Transition in Perovskite-Type Oxides, SrBO3 (B=Zr, Ru, Hf) , 2004 .

[21]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[22]  J. Hoya,et al.  Ab initio study of F-centers in alkali halides , 2017 .

[23]  T. Bredow,et al.  Mobility of F Centers in Alkali Halides , 2021 .

[24]  Gary W. Rubloff,et al.  Far-Ultraviolet Reflectance Spectra and the Electronic Structure of Ionic Crystals , 1972 .

[25]  Roberts Eglitis Ab initio calculations of SrTiO3, BaTiO3, PbTiO3, CaTiO3, SrZrO3, PbZrO3 and BaZrO3 (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein , 2014 .

[26]  A. I. Popov,et al.  Comparative Ab Initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces , 2020, Crystals.

[27]  L. Bi,et al.  The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction , 2020 .

[28]  Noriaki Itoh,et al.  Formation of interstitial-vacancy pairs by electronic excitation in pure ionic crystals , 1990 .

[29]  Gunnar Borstel,et al.  Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study , 2004 .

[30]  Roberts Eglitis Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces , 2013 .

[31]  E. Longo,et al.  Unraveling the relationship between bulk structure and exposed surfaces and its effect on the electronic structure and photoluminescent properties of Ba0.5Sr0.5TiO3: A joint experimental and theoretical approach , 2021 .

[32]  A. Lushchik,et al.  Evolution of Anion and Cation Excitons in Alkali Halide Crystals , 2018, Physics of the Solid State.

[33]  D. Osinkin,et al.  Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ , 2020 .

[34]  Systematic trends in the electronic structure parameters of the4dtransition-metal oxidesSrMO3(M=Zr,Mo, Ru, and Rh) , 2002, cond-mat/0207012.

[35]  R. Nelmes,et al.  The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K , 1985 .

[36]  A. Glazer,et al.  Lattice parameters and birefringence in PbTiO3 single crystals , 1979 .

[37]  M. Zdorovets,et al.  The influence of stopping power and temperature on latent track formation in YAP and YAG , 2019 .

[38]  S. Nikiforov,et al.  ESR and luminescent properties of anion-deficient α-Al2O3 single crystals after high-dose irradiation by a pulsed electron beam , 2019, Optical Materials.

[39]  Roger H. French,et al.  Bulk electronic structure of SrTiO3: Experiment and theory , 2001 .

[40]  H. L. Johnston,et al.  Structure of Barium Titanate at Elevated Temperatures , 1951 .

[41]  Ting-yu Liu,et al.  Optical Properties of the Oxygen Vacancy in KNbO3 Crystal , 2020, Journal of Electronic Materials.

[42]  F. Bechstedt,et al.  Electronic and Optical Properties of Small Metal Fluoride Clusters , 2020, ACS omega.

[43]  M. Ochoa-Lara,et al.  First-principles calculations and Bader analysis of oxygen-deficient induced magnetism in cubic BaTiO3−x and SrTiO3−x , 2018, Philosophical Magazine.

[44]  Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces , 1999, cond-mat/9908363.

[45]  N. Zhanturina,et al.  Luminescence of self-trapped excitons in alkali halide crystals at low temperature uniaxial deformation , 2020 .

[46]  Weidong Zhu,et al.  Adsorption of Water Molecule on Calcium Fluoride and Magnesium Fluoride Surfaces: A Combined Theoretical and Experimental Study , 2020 .

[47]  A. Kozlovskiy,et al.  Defect formation in AlN after irradiation with He2+ ions , 2019, Ceramics International.

[48]  M. Zdorovets,et al.  Structural defects caused by swift ions in fluorite single crystals , 2018 .

[49]  A. Lushchik,et al.  Dependence of long-lived defect creation on excitation density in MgO single crystals , 2007 .

[50]  M. Valerio,et al.  Particle size effects on structural and optical properties of BaF2 nanoparticles , 2017 .

[51]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[52]  A. J. Weymouth,et al.  Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip , 2020, Scientific Reports.

[53]  F. Agullo-lopez,et al.  Real-Time Identification of Oxygen Vacancy Centers in LiNbO3 and SrTiO3 during Irradiation with High Energy Particles , 2021, Crystals.

[54]  E. Nikolla,et al.  Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides† , 2018 .

[55]  D. Ellis,et al.  A comparative ab initio study of bulk and surface oxygen vacancies in PbTiO3, PbZrO3 and SrTiO3 perovskites , 2009 .

[56]  Benjamin G. Janesko,et al.  Quantifying the delocalization of surface and bulk F-centers , 2017 .

[57]  A. Élango,et al.  Effect of uniaxial stress on luminescence of X- and VUV- irradiated NaCl and NaBr crystals , 2001 .

[58]  J. O’Connell,et al.  On the threshold of damage formation in aluminum oxide via electronic excitations , 2014 .

[59]  B. Chakoumakos,et al.  High-temperature phase transitions in SrZrO 3 , 1999 .

[60]  H. Shi,et al.  Ab initio calculations for SrF2 with F- and M-centers , 2008 .

[61]  V. Nagirnyi,et al.  Spectrally resolved thermally stimulated luminescence of irradiated anion-defective alumina single crystals , 2017 .

[62]  J. Maier,et al.  Basic properties of the F-type centers in halides, oxides and perovskites , 2010 .

[63]  A. Zaoui,et al.  Ground state properties of fluorine from DFT-hybrid functional , 2021 .

[64]  E. Kotomin,et al.  Ab initio calculations of MgF2 (0 0 1) and (0 1 1) surface structure , 2010 .

[65]  K. Müller,et al.  The lattice constant vs. temperature relation around the 105 K transition of a flux-grown SrTiO3 crystal , 1985 .

[66]  A. Stoneham,et al.  Magneto optical properties of F centres in alkaline earth fluorides , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[67]  E. Radzhabov,et al.  Defect formation and VUV luminescence in BaF 2 , 2002 .

[68]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[69]  W. Chueh,et al.  Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions , 2015, Nature Communications.

[70]  H. Itoh,et al.  Photostimulated detection of defect formation in BaF2 under irradiation of synchrotron radiation , 2013 .

[71]  A. I. Popov,et al.  Ab initio calculations of CaZrO3 (011) surfaces: systematic trends in polar (011) surface calculations of ABO3 perovskites , 2019, Journal of Materials Science.

[72]  Roberts Eglitis,et al.  First-principles simulations on the aggregation of F centers in BaF2: R centers , 2011 .

[73]  Keju Sun,et al.  DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites , 2015, Journal of Materials Science.

[74]  M. Kirm,et al.  Creation of groups of spatially correlated defects in a KBr crystal at 8 K , 1998 .

[75]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[76]  L. Hobbs,et al.  New developments in X-ray storage phosphors , 2004 .

[77]  J. Arends Color Centers in Additively Colored CaF2 and BaF2 , 1964 .

[78]  Yilun Shang,et al.  On Generalized Distance Gaussian Estrada Index of Graphs , 2019, Symmetry.

[79]  K. Mizohata,et al.  Radiation resistance diagnostics of wide-gap optical materials , 2016 .

[80]  Roberts Eglitis,et al.  Ab Initio Calculations of Hydroxyl Impurities in CaF2 , 2012 .

[81]  First principle calculation of accurate native defect levels in CaF2 , 2017 .

[82]  J. Carrasco,et al.  First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3 , 2006 .

[83]  A. Kozlovskiy,et al.  Study of the effect of irradiation with Fe7+ions on the structural properties of thin TiO2 foils , 2019, Materials Research Express.

[84]  A. I. Popov,et al.  Radiation-induced point defects in simple oxides , 1998 .

[85]  A. Egorysheva,et al.  Blackbody emission from CaF2 and ZrO2 nanosized dielectric particles doped with Er3+ ions , 2020, RSC advances.

[86]  N. Itoh Creation of lattice defects by electronic excitation in alkali halides , 1982 .