Ontology-Mediated Query Answering over Log-Linear Probabilistic Data (Abstract)

Large-scale knowledge bases are at the heart of modern information systems. Their knowledge is inherently uncertain, and hence they are often materialized as probabilistic databases. However, probabilistic database management systems typically lack the capability to incorporate implicit background knowledge and, consequently, fail to capture some intuitive query answers. Ontology-mediated query answering is a popular paradigm for encoding commonsense knowledge, which can provide more complete answers to user queries. We propose a new data model that integrates the paradigm of ontology-mediated query answering with probabilistic databases, employing a log-linear probability model. We compare our approach to existing proposals, and provide supporting computational results.

[1]  Jean Christoph Jung,et al.  Ontology-Based Access to Probabilistic Data with OWL QL , 2012, SEMWEB.

[2]  Andrea Calì,et al.  A general datalog-based framework for tractable query answering over ontologies , 2009, SEBD.

[3]  Christopher Ré,et al.  Probabilistic databases , 2011, SIGA.

[4]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[5]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[6]  Christopher Ré,et al.  Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS , 2011, Proc. VLDB Endow..

[7]  Thomas Eiter,et al.  Query Rewriting for Horn-SHIQ Plus Rules , 2012, AAAI.

[8]  Thomas Lukasiewicz,et al.  Complexity Results for Probabilistic Datalog± , 2016, ECAI.

[9]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[10]  Pedro M. Domingos,et al.  Markov Logic in Infinite Domains , 2007, UAI.

[11]  Sebastian Rudolph,et al.  Fixed-Domain Reasoning for Description Logics , 2016, Description Logics.

[12]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[13]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[15]  Joseph Y. Halpern,et al.  From Statistical Knowledge Bases to Degrees of Belief , 1996, Artif. Intell..

[16]  Nico Potyka,et al.  Probabilistic Reasoning in the Description Logic ALCP with the Principle of Maximum Entropy , 2016, SUM.

[17]  Guy Van den Broeck,et al.  Skolemization for Weighted First-Order Model Counting , 2013, KR.

[18]  Heiner Stuckenschmidt,et al.  Log-Linear Description Logics , 2011, IJCAI.

[19]  Pedro M. Domingos,et al.  Markov Logic: An Interface Layer for Artificial Intelligence , 2009, Markov Logic: An Interface Layer for Artificial Intelligence.

[20]  I. Ceylan The Bayesian Ontology Language BEL , 2016 .

[21]  Dan Suciu,et al.  SlimShot: In-Database Probabilistic Inference for Knowledge Bases , 2016, Proc. VLDB Endow..

[22]  Mark Wallace,et al.  Tight, Consistent and Computable Completions for Unrestricted Logic Programs , 1993, The Journal of Logic Programming.

[23]  Ismail Ilkan Ceylan,et al.  Query Answering in Probabilistic Data and Knowledge Bases , 2018 .

[24]  Stuart J. Russell,et al.  BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.

[25]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[26]  Jeff B. Paris Common Sense and Maximum Entropy , 2004, Synthese.

[27]  Vaishak Belle,et al.  Open-Universe Weighted Model Counting , 2017, AAAI.

[28]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[29]  Andrea Calì,et al.  Taming the Infinite Chase: Query Answering under Expressive Relational Constraints , 2008, Description Logics.

[30]  Georg Gottlob,et al.  Query answering under probabilistic uncertainty in Datalog+ / − ontologies , 2013, Annals of Mathematics and Artificial Intelligence.

[31]  Nico Potyka,et al.  Inconsistency-tolerant reasoning over linear probabilistic knowledge bases , 2017, Int. J. Approx. Reason..

[32]  M. Paskin Maximum-Entropy Probabilistic Logics , 2001 .

[33]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[34]  Christopher De Sa,et al.  Incremental Knowledge Base Construction Using DeepDive , 2015, The VLDB Journal.

[35]  Guy Van den Broeck,et al.  The most probable database problem , 2014 .

[36]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[37]  Pierre Hansen,et al.  Models and Algorithms for Probabilistic and Bayesian Logic , 1995, IJCAI.

[38]  Jun'ichi Tsujii,et al.  Maximum Entropy Models with Inequality Constraints: A Case Study on Text Categorization , 2005, Machine Learning.

[39]  Ronald Fagin,et al.  Data exchange: semantics and query answering , 2003, Theor. Comput. Sci..

[40]  Guy Van den Broeck,et al.  Query Processing on Probabilistic Data: A Survey , 2017, Found. Trends Databases.

[41]  Thomas Lukasiewicz,et al.  Most Probable Explanations for Probabilistic Database Queries , 2017, IJCAI.

[42]  Thomas Lukasiewicz,et al.  Recent Advances in Querying Probabilistic Knowledge Bases , 2018, IJCAI.

[43]  Xinlei Chen,et al.  Never-Ending Learning , 2012, ECAI.

[44]  Taisuke Sato,et al.  PRISM: A Language for Symbolic-Statistical Modeling , 1997, IJCAI.

[45]  Magdalena Ortiz,et al.  Ontology-Mediated Query Answering with Data-Tractable Description Logics , 2015, Reasoning Web.

[46]  Steven Schockaert,et al.  Relational Marginal Problems: Theory and Estimation , 2017, AAAI.

[47]  Andrea Calì,et al.  Towards more expressive ontology languages: The query answering problem , 2012, Artif. Intell..

[48]  Thomas Schwentick,et al.  Rewriting Ontological Queries into Small Nonrecursive Datalog Programs , 2011, Description Logics.