Revisiting the revised Ag-Pt phase diagram

Abstract Because of the important applications of platinum alloys and related platinum-group-metals phases, complete phase diagrams for these systems are important for materials engineering. The currently accepted phase diagram for the Ag-Pt system is questionable because of its disagreement with earlier experiments and because of its claim for a lone ordered structure at 53%-Pt which was not characterized and which contradicts both computational predictions and analogy to the isoelectronic system Cu-Pt. A complete re-examination of the Ag-Pt system by computational and experimental means suggests a phase diagram similar to the isoelectronic system Cu-Pt. The unknown compound, claimed to be 53%-Pt, is found to be the L11 structure at 50%-Pt.

[1]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[2]  Marco Buongiorno Nardelli,et al.  The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.

[3]  Johnson Alloy models with the embedded-atom method. , 1989, Physical review. B, Condensed matter.

[4]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[5]  S. Froyen,et al.  Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations. , 1989, Physical review. B, Condensed matter.

[6]  Amr Elmasry,et al.  Multipartite priority queues , 2008, TALG.

[7]  P. Feschotte,et al.  A revision of the binary system AgPt , 1996 .

[8]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[9]  Alex Zunger,et al.  First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds , 1994 .

[10]  AgY AgTi,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals : review of 80 binary alloys , 2008 .

[11]  H. Okamoto Ag-Pt (silver-platinum) , 1997 .

[12]  Yoshiyuki Kawazoe,et al.  Determination of the elastic tensor in low-symmetry structures , 1998 .

[13]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[14]  Gus L. W. Hart,et al.  Generating derivative structures: Algorithm and applications , 2008, 0804.3544.

[15]  Gus L. W. Hart,et al.  Subject Areas : Materials Science A Viewpoint on : Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals , Using a Computational First-Principles Approach , 2013 .

[16]  A. Pasturel,et al.  Ab initio calculation of the phase stability in Au-Pd and Ag-Pt alloys , 2006 .

[17]  Jung-Hae Choi,et al.  Monte Carlo simulations of the structure of Pt-based bimetallic nanoparticles , 2012, 1202.3277.

[18]  The Ag-Pt (Silver-Platinum) system , 1987 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Peter E. Bl Projector-Augmented Wave Method: An introduction , 2003 .

[21]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[22]  Fr. Doerinckel Metallographische Mitteilungen aus dem Institut für anorganische Chemie der Universität Göttingen über einige Platinlegierungen , 1907 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Lance J. Nelson,et al.  Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures , 2012 .

[25]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[26]  Gus L. W. Hart,et al.  Cluster expansion made easy with Bayesian compressive sensing , 2013 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  B. Meredig,et al.  Interatomic potential for accurate phonons and defects in UO2 , 2014 .

[29]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[30]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[31]  Gus L. W. Hart,et al.  A high-throughput ab initio review of platinum-group alloy systems , 2013, 1308.4357.

[32]  A. Zunger,et al.  First-principles predictions of yet-unobserved ordered structures in the Ag-Pd phase diagram. , 2001, Physical review letters.

[33]  Gus L. W. Hart,et al.  Generating derivative structures at a fixed concentration , 2012 .

[34]  Damien Stehlé,et al.  Low-Dimensional Lattice Basis Reduction Revisited , 2004, ANTS.

[35]  Yoshiyuki Kawazoe,et al.  Force constants for substitutional alloys , 1999 .

[36]  R. Forcade,et al.  Generating derivative structures from multilattices: Algorithm and application to hcp alloys , 2009 .

[37]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[38]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[39]  An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  B. Johansson,et al.  Theoretical investigation of bulk ordering and surface segregation in Ag-Pd and other isoelectornic alloys , 2007 .