Local Convergence of Random Planar Graphs

The present work describes the asymptotic local shape of a graph drawn uniformly at random from all connected simple planar graphs with n labelled vertices. We establish a novel uniform infinite planar graph (UIPG) as quenched limit in the local topology as n tends to infinity. We also establish such limits for random 2-connected planar graphs and maps as their number of edges tends to infinity. Our approach encompasses a new probabilistic view on the Tutte decomposition. This allows us to follow the path along the decomposition of connectivity from planar maps to planar graphs in a uniformed way, basing each step on condensation phenomena for random walks under subexponentiality and Gibbs partitions. Using large deviation results, we recover the asymptotic formula by Gim\'enez and Noy (2009) for the number of planar graphs.

[1]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[2]  W. T. Tutte Connectivity in graphs , 1966 .

[3]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[4]  P. Embrechts,et al.  FUNCTIONS OF POWER SERIES , 1984 .

[5]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[6]  D. Denisov,et al.  Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.

[7]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[8]  S. Lane A structural characterization of planar combinatorial graphs , 1937 .

[9]  Colin McDiarmid,et al.  On the Number of Edges in Random Planar Graphs , 2004, Combinatorics, Probability and Computing.

[10]  Benedikt Stufler On the maximal offspring in a subcritical branching process , 2019, Electronic Journal of Probability.

[11]  H. Whitney 2-Isomorphic Graphs , 1933 .

[12]  Colin McDiarmid,et al.  Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[13]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[14]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[15]  T. Jonsson,et al.  Condensation in Nongeneric Trees , 2010, 1009.1826.

[17]  Benedikt Stufler,et al.  Rerooting Multi-type Branching Trees: The Infinite Spine Case , 2019, Journal of Theoretical Probability.

[18]  Gilbert Labelle,et al.  Two-connected graphs with prescribed three-connected components , 2007, Adv. Appl. Math..

[19]  Maxim Krikun,et al.  Local structure of random quadrangulations , 2005, math/0512304.

[20]  Robin Stephenson,et al.  Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps , 2014, 1412.6911.

[21]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[22]  Konstantinos Panagiotou,et al.  On the degree distribution of random planar graphs , 2011, SODA '11.

[23]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[24]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[25]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[26]  Gilbert Labelle,et al.  Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .

[27]  Colin McDiarmid,et al.  Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.

[28]  Michael Drmota,et al.  The Number of Double Triangles in Random Planar Maps , 2018, AofA.

[29]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[30]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[31]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[32]  Asaf Nachmias,et al.  Recurrence of planar graph limits , 2012, 1206.0707.

[33]  Valentas Kurauskas,et al.  On local weak limit and subgraph counts for sparse random graphs , 2015, Journal of Applied Probability.

[34]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[35]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[36]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[37]  Deryk Osthus,et al.  On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.

[38]  Marc Noy,et al.  Further results on random cubic planar graphs , 2018, Random Struct. Algorithms.

[39]  I. Kortchemski Limit theorems for conditioned non-generic Galton-Watson trees , 2012, 1205.3145.

[40]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[41]  Axel Bücher,et al.  A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results , 2019 .

[42]  Michael Drmota,et al.  A Central Limit Theorem for the Number of Degree-k Vertices in Random Maps , 2013, Algorithmica.

[43]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..