Local Convergence of Random Planar Graphs
暂无分享,去创建一个
[1] Omer Angel,et al. Uniform Infinite Planar Triangulations , 2002 .
[2] W. T. Tutte. Connectivity in graphs , 1966 .
[3] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[4] P. Embrechts,et al. FUNCTIONS OF POWER SERIES , 1984 .
[5] Marc Noy,et al. Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.
[6] D. Denisov,et al. Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.
[7] J. Edmonds,et al. A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.
[8] S. Lane. A structural characterization of planar combinatorial graphs , 1937 .
[9] Colin McDiarmid,et al. On the Number of Edges in Random Planar Graphs , 2004, Combinatorics, Probability and Computing.
[10] Benedikt Stufler. On the maximal offspring in a subcritical branching process , 2019, Electronic Journal of Probability.
[11] H. Whitney. 2-Isomorphic Graphs , 1933 .
[12] Colin McDiarmid,et al. Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.
[13] Svante Janson,et al. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.
[14] Colin McDiarmid,et al. Random planar graphs , 2005, J. Comb. Theory B.
[15] T. Jonsson,et al. Condensation in Nongeneric Trees , 2010, 1009.1826.
[17] Benedikt Stufler,et al. Rerooting Multi-type Branching Trees: The Infinite Spine Case , 2019, Journal of Theoretical Probability.
[18] Gilbert Labelle,et al. Two-connected graphs with prescribed three-connected components , 2007, Adv. Appl. Math..
[19] Maxim Krikun,et al. Local structure of random quadrangulations , 2005, math/0512304.
[20] Robin Stephenson,et al. Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps , 2014, 1412.6911.
[21] Marc Noy,et al. On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.
[22] Konstantinos Panagiotou,et al. On the degree distribution of random planar graphs , 2011, SODA '11.
[23] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.
[24] Philippe Flajolet,et al. Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.
[25] Robert E. Tarjan,et al. Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..
[26] Gilbert Labelle,et al. Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .
[27] Colin McDiarmid,et al. Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.
[28] Michael Drmota,et al. The Number of Double Triangles in Random Planar Maps , 2018, AofA.
[29] Benedikt Stufler. Limits of random tree-like discrete structures , 2016, Probability Surveys.
[30] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[31] Marc Noy,et al. The maximum degree of random planar graphs , 2012, SODA.
[32] Asaf Nachmias,et al. Recurrence of planar graph limits , 2012, 1206.0707.
[33] Valentas Kurauskas,et al. On local weak limit and subgraph counts for sparse random graphs , 2015, Journal of Applied Probability.
[34] Omer Giménez,et al. Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.
[35] Benedikt Stufler,et al. Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.
[36] Edward A. Bender,et al. The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..
[37] Deryk Osthus,et al. On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.
[38] Marc Noy,et al. Further results on random cubic planar graphs , 2018, Random Struct. Algorithms.
[39] I. Kortchemski. Limit theorems for conditioned non-generic Galton-Watson trees , 2012, 1205.3145.
[40] Marc Noy,et al. Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.
[41] Axel Bücher,et al. A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results , 2019 .
[42] Michael Drmota,et al. A Central Limit Theorem for the Number of Degree-k Vertices in Random Maps , 2013, Algorithmica.
[43] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..