High precision symplectic integrators for the Solar System
暂无分享,去创建一个
[1] A. Morbidelli. Modern Integrations of Solar System Dynamics , 2002 .
[2] Hiroshi Nakai,et al. Symplectic integrators and their application to dynamical astronomy , 1990 .
[3] L. Lourens,et al. The Neogene Period , 2012 .
[4] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[5] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[6] William Kahan,et al. Pracniques: further remarks on reducing truncation errors , 1965, CACM.
[7] B. Gladman,et al. On the Fates of Minor Bodies in the Outer Solar System , 1990 .
[8] Harold F. Levison,et al. A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .
[9] A. Fienga,et al. The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011, 1108.5546.
[10] Jacques Laskar,et al. A long-term numerical solution for the insolation quantities of the Earth , 2004 .
[11] Pseudo-High-Order Symplectic Integrators , 1999, astro-ph/9910263.
[12] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[13] A. Fienga,et al. La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.
[14] Tasso J. Kaper,et al. N th-order operator splitting schemes and nonreversible systems , 1996 .
[15] Robert I. McLachlan. Families of High-Order Composition Methods , 2004, Numerical Algorithms.
[16] J. Wisdom. Symplectic Correctors for Canonical Heliocentric n-Body Maps , 2006 .
[17] J. Laskar. A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.
[18] Jacques Laskar,et al. New families of symplectic splitting methods for numerical integration in dynamical astronomy , 2012, 1208.0689.
[19] P. Koseleff. Exhaustive Search of Symplectic Integrators using Computer Algebra , 1996 .
[20] Milutin Milankovictch,et al. Canon of insolation and the ice-age problem : (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941. , 1998 .
[21] Teo Mora. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8, 1988, Proceedings , 1989 .
[22] J. Laskar. Analytical Framework in Poincare Variables for the Motion of the Solar System , 1991 .
[23] D. Viswanath. How Many Timesteps for a Cycle? Analysis of the Wisdom-Holman Algorithm , 2002 .
[24] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[25] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[26] T. Teichmann,et al. Fundamentals of celestial mechanics , 1963 .
[27] Robert I. McLachlan,et al. Composition methods in the presence of small parameters , 1995 .
[28] S. Tremaine,et al. Confirmation of resonant structure in the solar system , 1992 .
[29] J. Wisdom,et al. Symplectic maps for the N-body problem. , 1991 .
[30] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[31] J. M. Sanz-Serna,et al. Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[32] Teo Mora,et al. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1987, Lecture Notes in Computer Science.
[33] M. Suzuki,et al. General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .
[34] Pierre-Vincent Koseleff. Calcul formel pour les méthodes de Lie en mécanique hamiltonienne. (Exact computations for Lie methods en hamiltonian mechanics) , 1993 .
[35] Jacques Laskar,et al. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .
[36] J. Laskar,et al. A Geologic Time Scale 2004: The Neogene Period , 2005 .
[37] J. Laskar,et al. High order symplectic integrators for perturbed Hamiltonian systems , 2000 .
[38] S. Tremaine,et al. Long-Term Planetary Integration With Individual Time Steps , 1994, astro-ph/9403057.
[39] J. Chambers. A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .
[40] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .
[41] Jack Wisdom,et al. Lie-Poisson integrators for rigid body dynamics in the solar system , 1994 .
[42] Q. Sheng. Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .
[43] Pierre-Vincent Koseleff,et al. Relations Among Lie Formal Series and Construction of Symplectic Integrators , 1993, AAECC.
[44] Agnes Fienga,et al. Strong chaos induced by close encounters with Ceres and Vesta , 2011 .
[45] Thomas R. Quinn,et al. A Three Million Year Integration of the Earth's Orbit , 1991 .
[46] Shu Lin,et al. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1999, Lecture Notes in Computer Science.
[47] G. Sussman,et al. Chaotic Evolution of the Solar System , 1992, Science.