High precision symplectic integrators for the Solar System

Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. These comparisons are made in Jacobi and heliocentric coordinates and the implementation of the algorithms is fully detailed for practical use. We conclude that high order integrators should be privileged, with a preference for the new $$(10,6,4)$$ method of Blanes et al. (2013).

[1]  A. Morbidelli Modern Integrations of Solar System Dynamics , 2002 .

[2]  Hiroshi Nakai,et al.  Symplectic integrators and their application to dynamical astronomy , 1990 .

[3]  L. Lourens,et al.  The Neogene Period , 2012 .

[4]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[5]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[6]  William Kahan,et al.  Pracniques: further remarks on reducing truncation errors , 1965, CACM.

[7]  B. Gladman,et al.  On the Fates of Minor Bodies in the Outer Solar System , 1990 .

[8]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[9]  A. Fienga,et al.  The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011, 1108.5546.

[10]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[11]  Pseudo-High-Order Symplectic Integrators , 1999, astro-ph/9910263.

[12]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[13]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[14]  Tasso J. Kaper,et al.  N th-order operator splitting schemes and nonreversible systems , 1996 .

[15]  Robert I. McLachlan Families of High-Order Composition Methods , 2004, Numerical Algorithms.

[16]  J. Wisdom Symplectic Correctors for Canonical Heliocentric n-Body Maps , 2006 .

[17]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[18]  Jacques Laskar,et al.  New families of symplectic splitting methods for numerical integration in dynamical astronomy , 2012, 1208.0689.

[19]  P. Koseleff Exhaustive Search of Symplectic Integrators using Computer Algebra , 1996 .

[20]  Milutin Milankovictch,et al.  Canon of insolation and the ice-age problem : (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941. , 1998 .

[21]  Teo Mora Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8, 1988, Proceedings , 1989 .

[22]  J. Laskar Analytical Framework in Poincare Variables for the Motion of the Solar System , 1991 .

[23]  D. Viswanath How Many Timesteps for a Cycle? Analysis of the Wisdom-Holman Algorithm , 2002 .

[24]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[25]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[26]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[27]  Robert I. McLachlan,et al.  Composition methods in the presence of small parameters , 1995 .

[28]  S. Tremaine,et al.  Confirmation of resonant structure in the solar system , 1992 .

[29]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[30]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[31]  J. M. Sanz-Serna,et al.  Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Teo Mora,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1987, Lecture Notes in Computer Science.

[33]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[34]  Pierre-Vincent Koseleff Calcul formel pour les méthodes de Lie en mécanique hamiltonienne. (Exact computations for Lie methods en hamiltonian mechanics) , 1993 .

[35]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[36]  J. Laskar,et al.  A Geologic Time Scale 2004: The Neogene Period , 2005 .

[37]  J. Laskar,et al.  High order symplectic integrators for perturbed Hamiltonian systems , 2000 .

[38]  S. Tremaine,et al.  Long-Term Planetary Integration With Individual Time Steps , 1994, astro-ph/9403057.

[39]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[40]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[41]  Jack Wisdom,et al.  Lie-Poisson integrators for rigid body dynamics in the solar system , 1994 .

[42]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[43]  Pierre-Vincent Koseleff,et al.  Relations Among Lie Formal Series and Construction of Symplectic Integrators , 1993, AAECC.

[44]  Agnes Fienga,et al.  Strong chaos induced by close encounters with Ceres and Vesta , 2011 .

[45]  Thomas R. Quinn,et al.  A Three Million Year Integration of the Earth's Orbit , 1991 .

[46]  Shu Lin,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1999, Lecture Notes in Computer Science.

[47]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.