Asymptotics for Szegö polynomial zeros

AbstractThe Wiener-Levinson method and algorithm, formulated here in terms of Szegö polynomials ρn(ψN,I;z) orthogonal on the unit circle, is used to find unknown frequencies ωj from anN-sample of a discrete time signal consisting of the superposition of sinusoidal waves with frequencies ω1,...,ω1. In a recent paper the authors (and W.J. Thron) have shown that zerosz(j, n, N, I) of ρn(ψN,I;z) converge asN→∞ to the critical points $$e^{i\omega _j } $$ ,j=1, 2,...,I, providedn≥n0(I)=2I+L, whereL is 0 or 1. The present paper gives results on the convergence of zerosz(j, n, N, I) to some of the $$e^{i\omega _j } $$ for the case in whichn≤n0(I), wheren is the degree of ρn(ψN,I;z).

[1]  E. Hille Analytic Function Theory , 1961 .

[2]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[3]  William B. Jones,et al.  Szego polynomials applied to frequency analysis , 1993 .

[4]  Adhemar Bultheel,et al.  Algorithms to Compute the Reflection Coefficients of Digital Filters , 1983 .

[5]  William B. Jones,et al.  Szego¨ polynomials associated with Wiener-Levinson filters , 1990 .

[6]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[7]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[8]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[9]  Ronald W. Schafer,et al.  Digital Processing of Speech Signals , 1978 .

[10]  John E. Markel,et al.  Linear Prediction of Speech , 1976, Communication and Cybernetics.

[11]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[12]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[13]  By Paul Anharmonic frequency analysis , 1972 .

[14]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[15]  W. B. Jones,et al.  Applications for Szegö polynomials to digital signal processing , 1991 .

[16]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[17]  George Weiss,et al.  Analytic Function Theory, Volume 2 , 1962 .

[18]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[19]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .