Effect of visuo-manual configuration on a telerobot integration into the body schema

Effet de la configuration visuo-manuelle sur l’integration dans le schema corporel d’un robot teleopere Les experiences sensori-motrices contribuent a l’elaboration d’une representation mentale du corps, connue sous le nom de schema corporel. Ce modele interne informe plus ou moins consciemment l’individu sur les capacites et limites de ses actes moteurs. Il permet en particulier de delimiter l’espace d’action dit pericorporel (c’est-a-dire jusqu’a la limite d’extension maximale des membres), versus l’espace extracorporel (hors du champ de d’atteinte de ceux-ci). Les travaux en neuropsychologie et neurophysiologie ont cependant mis en evidence que le schema corporel et, par consequent, l’espace pericorporel, etaient hautement deformables. En effet, les etudes experimentales tendent a montrer que les primates humains et non-humains etendent la representation interne de leur espace pericorporel, comme une consequence de l’incorporation de l’outil qu’ils manipulent. Une telle plasticite de la representation de notre corps peut s’expliquer par le fait qu’un artefact, integre dans la boucle de controle sensori-motrice, est assimile comme etant un element a part entiere de l’organisme. Jusqu’a present les travaux scientifiques se sont limites a explorer les interactions directes avec des outils simples (tels que des bâtons ou des râteaux). Dans ces conditions, les relations perceptivo-motrices sont relativement evidentes et naturelles pour l’utilisateur. Aussi, le premier objectif de cet article est d’etudier si le schema corporel peut egalement etre altere lorsque la correlation entre les actions motrices et leurs consequences perceptives est plus complexe, comme dans une situation de teleoperation. L’interet de la teleoperation est de permettre une manipulation aisee et precise les relations de contingences entre l’organe effecteur et le capteur sensoriel. L’un des actes moteurs qui va contribuer principalement a l’elaboration du schema corporel est l’action de prehension visuellement supervisee. Cet acte implique des relations specifiques de contingences sensorimotrices, internalisees au cours du developpement de l’individu. La deuxieme question posee dans la presente etude est de savoir si la manipulation de la relation de contingence visuo-manuelle aura un effet sur les capacites de l’humain a integrer un bras manipulateur teleopere dans son schema corporel. Pour cela, les sujets ont ete places en situation de controle a distance d’un bras robotise. Les mouvements du robot n’etaient percus qu’indirectement, a travers une camera reliee a un moniteur video. La camera etait placee a differents angles relativement au bras manipulateur. La procedure consistait a : (i) evaluer les capacites de l’operateur a estimer l’espace « d’attrapabilite » du bras avant son utilisation, (ii) laisser les participants manipuler le robot afin d’experimenter les capacites et limites motrices de celui-ci, puis (iii) repeter la tâche d’estimation de l’espace de prehension du bras apres entrainement. L’analyse des donnees montre (i) que la delimitation de l’espace de saisie peut etre aussi precise en situation de teleoperation qu’en situation naturelle (avec le bras humain), mais (ii) seulement lorsque la relation camera/bras respecte une configuration anthropomorphique et que l’operateur est acquis prealablement une experience motrice du robot. Ces resultats suggerent une vraisemblable modification du schema corporel de l’individu qui se traduit par une extension de l’espace pericorporel, lorsque l’architecture topologique du systeme teleopere tend a respecter les contingences sensori-motrices de l’homme. Les conclusions de cette etude sont discutees en termes de consequences pour le design de dispositifs de teleoperation, ergonomiquement adaptes a l’operateur humain.

[1]  Wa Wijnand IJsselsteijn,et al.  Self-attribution and telepresence , 2007 .

[2]  D. Proffitt,et al.  Action-specific influences on distance perception: a role for motor simulation. , 2008, Journal of experimental psychology. Human perception and performance.

[3]  Jon Driver,et al.  Reaching with a tool extends visual–tactile interactions into far space: evidence from cross-modal extinction , 2001, Neuropsychologia.

[4]  W. Epstein,et al.  Perceiving Distance: A Role of Effort and Intent , 2004, Perception.

[5]  Nathaniel I. Durlach,et al.  Telepresence, time delay and adaptation , 1991 .

[6]  Jody C. Culham,et al.  fMRI reveals a preference for near viewing in the human parieto-occipital cortex , 2007, NeuroImage.

[7]  C. Gross,et al.  The representation of extrapersonal space: A possible role for bimodal, visual-tactile neurons , 1995 .

[8]  Atsushi Iriki,et al.  Self-images in the video monitor coded by monkey intraparietal neurons , 2001, Neuroscience Research.

[9]  Edoardo Bisiach,et al.  The Spatial Features of Unilateral Neglect , 1997 .

[10]  Jon Driver,et al.  Attentional competition between modalities: extinction between touch and vision after right hemisphere damage , 1997, Neuropsychologia.

[11]  M. Jeannerod The cognitive neuroscience of action , 1997, Trends in Cognitive Sciences.

[12]  S. Aglioti,et al.  Disownership of left hand and objects related to it in a patient with right brain damage , 1996, Neuroreport.

[13]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[14]  G. Vallar Spatial hemineglect in humans , 1998, Trends in Cognitive Sciences.

[15]  Jeanine K. Stefanucci,et al.  The Role of Effort in Perceiving Distance , 2003, Psychological science.

[16]  A. Berti,et al.  When Far Becomes Near: Remapping of Space by Tool Use , 2000, Journal of Cognitive Neuroscience.

[17]  Yann Coello,et al.  Motor representations and the perception of space: perceptual judgments of the boundary of action space , 2010 .

[18]  Inaki Maurtua Human Machine Interaction - Getting Closer , 2012 .

[19]  J P Orliaguet,et al.  Visuokinesthetic Realignment in a Video-Controlled Reaching Task , 2003, Journal of motor behavior.

[20]  Christopher Kennard,et al.  Visual neglect associated with frontal lobe infarction , 1996, Journal of Neurology.

[21]  Mirko Farina Perception, action, and consciousness: Sensorimotor Dynamics and Two Visual Systems , 2010 .

[22]  Yann Coello,et al.  Frame of reference and adaptation to directional bias in a video-controlled reaching task , 2002, Ergonomics.

[23]  M. Tanaka,et al.  Coding of modified body schema during tool use by macaque postcentral neurones. , 1996, Neuroreport.

[24]  W. Warren,et al.  Visual guidance of walking through apertures: body-scaled information for affordances. , 1987, Journal of experimental psychology. Human perception and performance.

[25]  C. Spence,et al.  Visual Capture of Touch: Out-of-the-Body Experiences With Rubber Gloves , 2000, Psychological science.

[26]  W. Epstein,et al.  Tool use affects perceived distance, but only when you intend to use it. , 2005, Journal of experimental psychology. Human perception and performance.

[27]  Alice C. Roy,et al.  Tool-use induces morphological updating of the body schema , 2009, Current Biology.

[28]  Elisabetta Làdavas,et al.  Seeing where your hands are , 1997, Nature.

[29]  Emilie M. Roth,et al.  Symbolic AI computer simulations as tools for investigating the dynamics of joint cognitive systems , 1995 .

[30]  A. Maravita,et al.  Tools for the body (schema) , 2004, Trends in Cognitive Sciences.

[31]  J. Paillard Brain and space , 1991 .

[32]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[33]  John C. Marshall,et al.  Spatial neglect : position papers on theory and practice , 1994 .

[34]  G Rizzolatti,et al.  The Space Around Us , 1997, Science.

[35]  Jack M. Loomis,et al.  Distal Attribution and Presence , 1992, Presence: Teleoperators & Virtual Environments.

[36]  G. Lakoff,et al.  The Brain's concepts: the role of the Sensory-motor system in conceptual knowledge , 2005, Cognitive neuropsychology.

[37]  P. Haggard,et al.  The rubber hand illusion revisited: visuotactile integration and self-attribution. , 2005, Journal of experimental psychology. Human perception and performance.

[38]  Jens Rasmussen,et al.  Cognitive Systems Engineering , 2022 .

[39]  D. Perani,et al.  The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man , 1986, Neuropsychologia.

[40]  A. Cowey,et al.  No abrupt change in visual hemineglect from near to far space , 1998, Neuropsychologia.

[41]  G. Rizzolatti,et al.  Mirror Neurons Differentially Encode the Peripersonal and Extrapersonal Space of Monkeys , 2009, Science.

[42]  A. Borghi,et al.  Embodied cognition and beyond: Acting and sensing the body , 2010, Neuropsychologia.

[43]  D. Lloyd Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand , 2007, Brain and Cognition.

[44]  Daniel Mestre,et al.  Implémentation de mécanismes d'anticipation visuo-motrice en téléopération , 2004 .

[45]  C. Spence,et al.  Attention and the crossmodal construction of space , 1998, Trends in Cognitive Sciences.

[46]  Jonathan D. Cohen,et al.  Rubber hands ‘feel’ touch that eyes see , 1998, Nature.

[47]  F. Pavani,et al.  Left tactile extinction following visual stimulation of a rubber hand. , 2000, Brain : a journal of neurology.

[48]  Erik Hollnagel,et al.  Cognitive Systems Engineering: New Wine in New Bottles , 1983, Int. J. Man Mach. Stud..

[49]  G. Knoblich,et al.  The case for motor involvement in perceiving conspecifics. , 2005, Psychological bulletin.

[50]  J. Marshall,et al.  Left neglect for near but not far space in man , 1991, Nature.

[51]  Jason B Mattingley,et al.  Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space , 2003, Neuropsychologia.

[52]  Jody C Culham,et al.  Is That within Reach? fMRI Reveals That the Human Superior Parieto-Occipital Cortex Encodes Objects Reachable by the Hand , 2009, The Journal of Neuroscience.

[53]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[54]  W. Prinz,et al.  Perceptual resonance: action-induced modulation of perception , 2007, Trends in Cognitive Sciences.

[55]  P. B. Pufall,et al.  Perceiving Whether or Not the World Affords Stepping Onto and Over: A Developmental Study , 1992 .

[56]  A. Cowey,et al.  Left visuo-spatial neglect can be worse in far than in near space , 1994, Neuropsychologia.

[57]  Yann Coello,et al.  Embodiment, spatial categorisation and action , 2007, Consciousness and Cognition.

[58]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[59]  Fred H. Previc,et al.  The Neuropsychology of 3-D Space , 1998 .

[60]  Giuseppe di Pellegrino,et al.  Neuropsychological Evidence of an Integrated Visuotactile Representation of Peripersonal Space in Humans , 1998, Journal of Cognitive Neuroscience.

[61]  A Farnè,et al.  Dynamic size‐change of hand peripersonal space following tool use , 2000, Neuroreport.

[62]  M S Graziano,et al.  Coding the location of the arm by sight. , 2000, Science.

[63]  Jacques Paillard,et al.  The hand and the tool: the functional architecture of human technical skills , 1993 .

[64]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.