Sulindac suppresses beta-catenin expression in human cancer cells.

[1]  Wancai Yang,et al.  JNK1 is required for sulindac-mediated inhibition of cell proliferation and induction of apoptosis in vitro and in vivo. , 2007, European journal of pharmacology.

[2]  J. Benhattar,et al.  Targeting the Wnt signaling pathway to treat Barrett’s esophagus , 2007, Expert opinion on therapeutic targets.

[3]  G. Turashvili,et al.  Wnt Signaling Pathway in Mammary Gland Development and Carcinogenesis , 2007, Pathobiology.

[4]  T. He,et al.  Wnt signaling and human diseases: what are the therapeutic implications? , 2007, Laboratory Investigation.

[5]  E. Szabo Selecting targets for cancer prevention: where do we go from here? , 2006, Nature Reviews Cancer.

[6]  S. Terry,et al.  Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer , 2006, Journal of cellular biochemistry.

[7]  G. Mills,et al.  Progress in Chemoprevention Drug Development: The Promise of Molecular Biomarkers for Prevention of Intraepithelial Neoplasia and Cancer—A Plan to Move Forward , 2006, Clinical Cancer Research.

[8]  H. Lee,et al.  Wnt/Frizzled signaling in hepatocellular carcinoma. , 2006, Frontiers in bioscience : a journal and virtual library.

[9]  D. Ahnen,et al.  Sulindac independently modulates extracellular signal–regulated kinase 1/2 and cyclic GMP–dependent protein kinase signaling pathways , 2006, Molecular Cancer Therapeutics.

[10]  H. Clevers Colon cancer--understanding how NSAIDs work. , 2006, The New England journal of medicine.

[11]  H. Cottam,et al.  Repression of β-catenin function in malignant cells by nonsteroidal antiinflammatory drugs , 2005 .

[12]  H. Cooper,et al.  Sulindac Sulfone Is Most Effective in Modulating β‐Catenin‐Mediated Transcription in Cells with Mutant APC , 2005, Annals of the New York Academy of Sciences.

[13]  Wancai Yang,et al.  p27kip1 in intestinal tumorigenesis and chemoprevention in the mouse. , 2005, Cancer research.

[14]  H. Hollema,et al.  Sulindac Inhibits β-Catenin Expression in Normal-Appearing Colon of Hereditary Nonpolyposis Colorectal Cancer and Familial Adenomatous Polyposis Patients , 2005, Cancer Epidemiology Biomarkers & Prevention.

[15]  Biao He,et al.  Wnt signaling in lung cancer. , 2005, Cancer letters.

[16]  Wancai Yang,et al.  Methylation in the p21WAF1/cip1 promoter of Apc+/−, p21+/− mice and lack of response to sulindac , 2005, Oncogene.

[17]  M. Hull,et al.  Effect of nonsteroidal anti-inflammatory drugs on β-catenin protein levels and catenin-related transcription in human colorectal cancer cells , 2004, British Journal of Cancer.

[18]  S T Pals,et al.  Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines , 2004, British Journal of Cancer.

[19]  G. Piazza,et al.  Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. , 2003, Molecular cancer therapeutics.

[20]  M. Pignatelli,et al.  β-catenin - A linchpin in colorectal carcinogenesis? , 2002 .

[21]  M. Nishimura,et al.  Increased expression of β‐catenin predicts better prognosis in nonsmall cell lung carcinomas , 2002 .

[22]  R. Kucherlapati,et al.  p21WAF1/cip1 is an important determinant of intestinal cell response to sulindac in vitro and in vivo , 2001 .

[23]  M. Sugita,et al.  Mutations of the β- and γ-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas , 2001, British Journal of Cancer.

[24]  A. Siermann,et al.  The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate β-catenin/TCF-4 signaling , 2001, Oncogene.

[25]  M. Hung,et al.  β-Catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression , 2000 .

[26]  K. Kinzler,et al.  PPARδ Is an APC-Regulated Target of Nonsteroidal Anti-Inflammatory Drugs , 1999, Cell.

[27]  J. Mariadason,et al.  Butyrate-induced apoptotic cascade in colonic carcinoma cells: modulation of the beta-catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[28]  R. Langenbach,et al.  Malignant Transformation and Antineoplastic Actions of Nonsteroidal Antiinflammatory Drugs (Nsaids) on Cyclooxygenase-Null Embryo Fibroblasts , 1999, The Journal of experimental medicine.

[29]  V. Steele,et al.  Chemopreventive efficacy of sulindac sulfone against colon cancer depends on time of administration during carcinogenic process. , 1999, Cancer research.

[30]  M. Bertagnolli,et al.  Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. , 1996, Cancer research.

[31]  V. Steele,et al.  Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. , 1995, Cancer research.

[32]  F. Kolligs,et al.  Wnt signaling as a therapeutic target for cancer. , 2007, Methods in molecular biology.

[33]  H. Cottam,et al.  Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Nishimura,et al.  Increased expression of beta-catenin predicts better prognosis in nonsmall cell lung carcinomas. , 2002, Cancer.

[35]  M. Pignatelli,et al.  Beta-catenin--a linchpin in colorectal carcinogenesis? , 2002, The American journal of pathology.

[36]  Masafumi Nakamura,et al.  Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC , 2001, Nature Cell Biology.

[37]  G. Wulf,et al.  Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. , 2001, Nature cell biology.

[38]  R. Kucherlapati,et al.  p21(WAF1/cip1) is an important determinant of intestinal cell response to sulindac in vitro and in vivo. , 2001, Cancer research.

[39]  H. Clevers,et al.  The Yin-Yang of TCF/beta-catenin signaling. , 2000, Advances in cancer research.

[40]  R. Garavito,et al.  Cyclooxygenases: structural, cellular, and molecular biology. , 2000, Annual review of biochemistry.

[41]  Å. Borg,et al.  Involvement of adenomatous polyposis coli (APC)/β-catenin signalling in human breast cancer , 2000 .

[42]  M. Hung,et al.  Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Jönsson,et al.  Involvement of adenomatous polyposis coli (APC)/beta-catenin signalling in human breast cancer. , 2000, European journal of cancer.

[44]  K. Kinzler,et al.  PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. , 1999, Cell.

[45]  M. Lipkin New rodent models for studies of chemopreventive agents , 1997, Journal of cellular biochemistry. Supplement.